在openapi-typescript项目中处理非GET端点的数据查询问题
背景介绍
在RESTful API开发中,我们通常使用GET方法来获取数据,POST方法来创建或修改数据。然而在实际开发中,有时会遇到需要从POST端点获取数据的特殊情况。这种情况可能由于服务器端限制、复杂参数传递需求或历史遗留原因而产生。
问题分析
openapi-typescript项目的swr-openapi模块默认只支持GET请求的端点进行数据查询。这在大多数情况下是合理的,但当我们需要从POST端点获取数据时,就会遇到限制。这种限制来源于swr-openapi内部实现的fetcher函数,它硬编码了GET方法。
解决方案
1. 直接使用SWR核心功能
我们可以绕过swr-openapi提供的封装,直接使用SWR的核心功能来实现对POST端点的查询:
import useSWR from "swr";
import createClient from "openapi-fetch";
import type { paths } from "./api-types";
const client = createClient<paths>();
function usePostQuery() {
const requestBody = {
queryParam: "value"
};
return useSWR(["/api/data-endpoint", requestBody], async ([path, body]) => {
const response = await client.POST(path, { body });
if (response.error) {
throw response.error;
}
return response.data;
});
}
这种方法保持了SWR的缓存和自动重新获取等特性,同时支持POST请求。
2. 创建自定义查询钩子
如果需要频繁使用这种模式,可以创建一个可复用的自定义钩子:
import useSWR from "swr";
import createClient from "openapi-fetch";
import type { paths } from "./api-types";
const client = createClient<paths>();
function createPostQueryHook<Path extends keyof paths["post"]>() {
return (path: Path, body: any) => {
return useSWR([path, body], async ([p, b]) => {
const res = await client.POST(p, { body: b });
if (res.error) throw res.error;
return res.data;
});
};
}
// 使用示例
const useDataQuery = createPostQueryHook<"/api/data-endpoint">();
技术考量
-
缓存机制:SWR会根据请求路径和参数自动缓存响应,这对于POST请求同样有效。
-
类型安全:通过TypeScript泛型,我们可以保持端点的类型安全,确保请求体和响应体的类型正确。
-
错误处理:与标准GET查询一样,我们需要正确处理可能的错误响应。
-
性能影响:POST请求通常不被缓存,但SWR的客户端缓存机制仍然有效。
最佳实践建议
-
尽量遵循RESTful规范,只在确实需要时才使用POST获取数据。
-
对于复杂的查询参数,考虑使用GraphQL作为替代方案。
-
如果可能,建议后端团队将只读操作改为GET方法。
-
在文档中明确说明这种非标准用法的原因和场景。
总结
虽然openapi-typescript的swr-openapi模块默认不支持POST端点的查询功能,但通过直接使用SWR核心功能或创建自定义钩子,我们可以灵活地解决这一问题。这种方法保持了类型安全和SWR的优秀特性,同时适应了特殊场景的需求。在实际项目中,应当权衡规范遵循和实际需求,选择最适合的解决方案。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00