如何搭建与使用 `rawdrawandroid` 开源项目
1. 项目目录结构及介绍
rawdrawandroid 是一个旨在让开发者能够在不写任何 Java 代码的情况下,仅通过 C 语言和 Makefile 来构建 Android 应用的项目。以下是该项目的一个基本目录结构概述:
rawdrawandroid/
├── AndroidManifest.xml # 应用的主要配置文件,定义了应用的基本属性和权限。
├── Makefile # 构建脚本,用于编译C代码并打包成APK。
├── src # 包含项目所有的C源代码文件。
│ ├── main.c # 主入口点,通常为程序执行的开始。
├── jni #JNI(Java Native Interface)目录,存放与Android平台交互的C/C++代码。
│ └── Android.mk # NDK编译规则文件,指导如何编译JNI代码。
├── assets # 可选,存放应用程序的非代码资源,如数据文件。
├── res # 资源目录,包含图标、布局文件等。
└── other relevant files # 其他可能包括的辅助文件或说明文档。
2. 项目的启动文件介绍
在 rawdrawandroid 中,核心的启动逻辑通常位于 src/main.c 文件中。这个文件是C语言程序的起点,它负责初始化应用程序的核心功能,并且在Android环境中桥接原生代码与系统服务。对于依赖JNI的应用,还会在这部分涉及到与Java层的交互逻辑,尽管本项目强调的是无Java代码开发。
3. 项目的配置文件介绍
-
AndroidManifest.xml:这是Android应用的关键配置文件,描述了应用的基本信息如包名(
package), 目标SDK版本,权限需求,以及应用内各个组件(如活动Activities)的声明。用户需要在此处确保正确地修改了包名和应用名称,以匹配实际项目需求。 -
Makefile:作为一个重要的构建工具,Makefile定义了一系列规则来编译和链接C源代码,最终生成APK文件。用户需了解其中的变量如
APPNAME和PACKAGENAME,并按需调整,以保证构建过程符合项目命名规范。此外,通过修改Makefile,可以控制编译过程中的细节,比如优化选项、库的链接等。 -
Android.mk(JNI目录下): 虽然本项目主打全C环境,但在涉及JNI时,这个文件指导NDK如何编译你的C/C++代码,定义了哪些源文件需要编译以及它们如何被链接到最终的库中。对于纯C项目,直接关注Makefile即可,Android.mk可能不是必需的,但了解其用途对理解整个构建流程有帮助。
请注意,使用此项目前,需确保已安装有适当的开发环境,如Android SDK和NDK,以及支持C/C++开发的环境配置。遵循上述指导,您可以开始探索如何在Android平台上使用C语言进行开发,体验与常规Java开发截然不同的途径。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C046
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0124
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00