Microsoft.Extensions.AI 中工具调用与聊天历史集成的技术解析
2025-06-27 19:56:00作者:舒璇辛Bertina
在开发基于大语言模型(LLM)的聊天应用时,正确处理工具调用(tool call)及其响应在聊天历史中的集成是一个关键的技术点。本文将深入探讨Microsoft.Extensions.AI库中关于这一功能的设计考量与实现细节。
工具调用与响应在聊天历史中的必要性
当AI模型需要执行特定功能时,会发起工具调用请求。随后,系统会返回工具执行结果。这两个环节的信息都必须完整地包含在聊天历史中,原因有三:
- 服务端要求:大多数AI服务提供商要求工具调用请求和响应必须成对出现且相邻存放
- 模型上下文:完整的历史记录帮助模型理解已执行的操作,避免重复调用
- 对话连贯性:确保后续对话能基于完整的交互历史进行
Microsoft.Extensions.AI的实现演进
该库在此功能上经历了两个主要实现阶段:
早期实现方式
在初始版本中,FunctionInvokingChatClient会直接修改传入的消息列表(messages),自动将工具调用内容和结果添加到历史记录中。这种方式虽然方便,但存在以下特点:
- 隐式修改输入参数,不够直观
- 开发者对历史记录的控制权较低
- 可能引发意料之外的副作用
当前实现方式
最新版本采用了更明确的处理策略:
- 保持输入消息列表的不可变性
- 通过GetStreamingResponseAsync返回完整的交互内容,包括:
- 原始用户消息
- 工具调用请求(assistant角色)
- 工具执行结果(user角色)
- 最终模型响应
- 由调用方显式决定如何处理这些内容
这种设计提供了更好的透明度和控制性,开发者可以明确看到所有交互环节,并自主决定如何维护聊天历史。
实际应用中的最佳实践
在构建聊天应用时,建议采用以下模式处理工具调用:
// 添加用户消息到对话历史
messages.Add(userMessage);
// 处理流式响应
var responseBuilder = new StringBuilder();
await foreach (var update in ChatClient.GetStreamingResponseAsync(messages))
{
// 处理工具调用响应
if (update.Role == ChatRole.Tool)
{
foreach (var result in update.Contents.OfType<FunctionResultContent>())
{
// 构建工具响应消息并添加到历史
var toolResponse = new ChatMessage(ChatRole.User,
[$"工具名称: {result.FunctionName}\n" +
$"调用ID: {result.ToolCallId}\n" +
$"参数: {result.Arguments}\n" +
$"结果: {result.Result}"]);
messages.Add(toolResponse);
}
}
// 处理普通文本响应
responseBuilder.Append(update.Text);
}
// 添加最终助手响应到历史
messages.Add(new ChatMessage(ChatRole.Assistant, [responseBuilder.ToString()]));
调试与日志记录
为更好地理解交互过程,可以采用以下调试方法:
- 使用LoggingChatClient:通过ILogger记录JSON格式的聊天消息和选项
- HttpClient级日志:捕获原始网络请求/响应数据
- 自定义中间件:在消息处理流水线中插入诊断逻辑
总结
Microsoft.Extensions.AI通过清晰的API设计,为开发者提供了灵活而强大的工具调用集成方案。理解并正确应用这些模式,可以构建出更可靠、更智能的聊天应用系统。随着库的持续演进,这一功能的设计理念也体现了从"魔法"到"显式控制"的转变,为开发者提供了更好的可观察性和可控性。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C048
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0126
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
VSdebugChkMatch.exe:专业PDB签名匹配工具全面解析与使用指南 Solidcam后处理文件下载与使用完全指南:提升CNC编程效率的必备资源 中兴e读zedx.zed文档阅读器V4.11轻量版:专业通信设备文档阅读解决方案 深入解析Windows内核模式驱动管理器:系统驱动管理的终极利器 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 STM32到GD32项目移植完全指南:从兼容性到实战技巧 Python开发者的macOS终极指南:VSCode安装配置全攻略 PCDViewer-4.9.0-Ubuntu20.04:专业点云可视化与编辑工具全面解析 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 昆仑通态MCGS与台达VFD-M变频器通讯程序详解:工业自动化控制完美解决方案
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
440
3.35 K
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
818
389
Ascend Extension for PyTorch
Python
248
284
暂无简介
Dart
701
163
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
React Native鸿蒙化仓库
JavaScript
274
329
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
280
126
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.23 K
677
仓颉编译器源码及 cjdb 调试工具。
C++
139
871