Microsoft.Extensions.AI 中工具调用与聊天历史集成的技术解析
2025-06-27 12:45:02作者:舒璇辛Bertina
在开发基于大语言模型(LLM)的聊天应用时,正确处理工具调用(tool call)及其响应在聊天历史中的集成是一个关键的技术点。本文将深入探讨Microsoft.Extensions.AI库中关于这一功能的设计考量与实现细节。
工具调用与响应在聊天历史中的必要性
当AI模型需要执行特定功能时,会发起工具调用请求。随后,系统会返回工具执行结果。这两个环节的信息都必须完整地包含在聊天历史中,原因有三:
- 服务端要求:大多数AI服务提供商要求工具调用请求和响应必须成对出现且相邻存放
 - 模型上下文:完整的历史记录帮助模型理解已执行的操作,避免重复调用
 - 对话连贯性:确保后续对话能基于完整的交互历史进行
 
Microsoft.Extensions.AI的实现演进
该库在此功能上经历了两个主要实现阶段:
早期实现方式
在初始版本中,FunctionInvokingChatClient会直接修改传入的消息列表(messages),自动将工具调用内容和结果添加到历史记录中。这种方式虽然方便,但存在以下特点:
- 隐式修改输入参数,不够直观
 - 开发者对历史记录的控制权较低
 - 可能引发意料之外的副作用
 
当前实现方式
最新版本采用了更明确的处理策略:
- 保持输入消息列表的不可变性
 - 通过GetStreamingResponseAsync返回完整的交互内容,包括:
- 原始用户消息
 - 工具调用请求(assistant角色)
 - 工具执行结果(user角色)
 - 最终模型响应
 
 - 由调用方显式决定如何处理这些内容
 
这种设计提供了更好的透明度和控制性,开发者可以明确看到所有交互环节,并自主决定如何维护聊天历史。
实际应用中的最佳实践
在构建聊天应用时,建议采用以下模式处理工具调用:
// 添加用户消息到对话历史
messages.Add(userMessage);
// 处理流式响应
var responseBuilder = new StringBuilder();
await foreach (var update in ChatClient.GetStreamingResponseAsync(messages))
{
    // 处理工具调用响应
    if (update.Role == ChatRole.Tool)
    {
        foreach (var result in update.Contents.OfType<FunctionResultContent>())
        {
            // 构建工具响应消息并添加到历史
            var toolResponse = new ChatMessage(ChatRole.User, 
                [$"工具名称: {result.FunctionName}\n" +
                 $"调用ID: {result.ToolCallId}\n" +
                 $"参数: {result.Arguments}\n" +
                 $"结果: {result.Result}"]);
            messages.Add(toolResponse);
        }
    }
    
    // 处理普通文本响应
    responseBuilder.Append(update.Text);
}
// 添加最终助手响应到历史
messages.Add(new ChatMessage(ChatRole.Assistant, [responseBuilder.ToString()]));
调试与日志记录
为更好地理解交互过程,可以采用以下调试方法:
- 使用LoggingChatClient:通过ILogger记录JSON格式的聊天消息和选项
 - HttpClient级日志:捕获原始网络请求/响应数据
 - 自定义中间件:在消息处理流水线中插入诊断逻辑
 
总结
Microsoft.Extensions.AI通过清晰的API设计,为开发者提供了灵活而强大的工具调用集成方案。理解并正确应用这些模式,可以构建出更可靠、更智能的聊天应用系统。随着库的持续演进,这一功能的设计理念也体现了从"魔法"到"显式控制"的转变,为开发者提供了更好的可观察性和可控性。
登录后查看全文 
热门项目推荐
相关项目推荐
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCRDeepSeek-OCR是一款以大语言模型为核心的开源工具,从LLM视角出发,探索视觉文本压缩的极限。Python00
 
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Jinja00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
 
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
 
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
278
2.57 K
deepin linux kernel
C
24
6
React Native鸿蒙化仓库
JavaScript
222
302
Ascend Extension for PyTorch
Python
105
133
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
599
161
暂无简介
Dart
568
126
一个用于服务器应用开发的综合工具库。
- 零配置文件
- 环境变量和命令行参数配置
- 约定优于配置
- 深刻利用仓颉语言特性
- 只需要开发动态链接库,fboot负责加载、初始化并运行。
Cangjie
250
14
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.03 K
607
仓颉编译器源码及 cjdb 调试工具。
C++
118
103
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
446