Olive项目中使用BGE模型在Snapdragon NPU上的优化实践
2025-07-07 14:03:22作者:明树来
背景介绍
微软开源的Olive项目是一个专注于模型优化的工具集,能够帮助开发者将各种深度学习模型转换为适合不同硬件平台的高效形式。本文将分享在使用Olive优化BGE(BAAI/bge-small-en-v1.5)模型并在高通Snapdragon NPU上部署时遇到的技术挑战和解决方案。
技术挑战
在将BGE模型优化为适用于Snapdragon NPU的QNN格式时,开发者遇到了几个关键问题:
- 算子支持问题:原始模型中的Unsqueeze、Expand和Cast等算子无法在NPU上直接运行,导致模型执行失败
- 性能权衡:在启用CPU回退机制时,虽然解决了算子支持问题,但带来了额外的数据传输开销
- 输入尺寸影响:不同输入长度下,NPU加速效果差异显著
优化方案
模型转换流程
通过Olive工具链,我们采用了以下优化步骤:
- 使用HuggingFace模型作为输入源
- 转换为ONNX格式并固定输入形状
- 执行图手术操作,替换Attention Mask值
- QNN预处理阶段,包括LayerNorm融合
- 量化处理,激活值使用QUInt16,权重使用QUInt8
关键配置调整
在优化过程中,以下几个配置项对最终效果影响显著:
- 输入形状设置:初始设置为[1,128],后调整为[1,512]以获得更好的NPU利用率
- 量化参数:选择MinMax校准方法确保精度损失最小
- 执行提供者配置:权衡NPU专用加速和CPU回退机制
性能分析
经过多次测试验证,我们获得了以下性能数据:
-
短文本输入(128 tokens):
- 纯CPU执行:约20ms
- NPU+CPU回退:约27ms
-
长文本输入(512 tokens):
- 纯CPU执行:约187ms
- NPU+CPU回退:约77ms
从数据可以看出,对于较长的输入序列,NPU加速效果更为明显,实现了2.4倍的性能提升。这表明NPU在高计算量场景下能够更好地发挥其并行计算优势。
经验总结
- 算子兼容性:并非所有ONNX算子都能被NPU原生支持,需要提前验证关键路径
- 输入尺寸选择:合理设置输入长度对性能影响很大,需要根据实际应用场景权衡
- 量化策略:不同的量化配置会影响模型精度和性能,需要多次实验找到最佳平衡点
- 评估流程:优化过程中的评估环节至关重要,应包含精度和延迟等多维度指标
未来改进方向
基于本次实践,我们认为还可以在以下方面进行深入探索:
- 进一步优化图结构,减少必须回退到CPU执行的算子数量
- 尝试不同的量化策略组合,寻找更优的精度-速度平衡点
- 开发自动化工具帮助选择最优输入尺寸配置
- 探索混合精度计算的可能性,在关键路径使用更高精度的数据类型
通过这次BGE模型在Snapdragon NPU上的优化实践,我们不仅解决了具体的技术问题,也为类似场景下的模型优化积累了宝贵经验。这些经验对于其他希望在移动端NPU上部署大型语言模型的开发者具有重要参考价值。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
Baichuan-M3-235BBaichuan-M3 是百川智能推出的新一代医疗增强型大型语言模型,是继 Baichuan-M2 之后的又一重要里程碑。Python00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
热门内容推荐
最新内容推荐
Degrees of Lewdity中文汉化终极指南:零基础玩家必看的完整教程Unity游戏翻译神器:XUnity Auto Translator 完整使用指南PythonWin7终极指南:在Windows 7上轻松安装Python 3.9+终极macOS键盘定制指南:用Karabiner-Elements提升10倍效率Pandas数据分析实战指南:从零基础到数据处理高手 Qwen3-235B-FP8震撼升级:256K上下文+22B激活参数7步搞定机械键盘PCB设计:从零开始打造你的专属键盘终极WeMod专业版解锁指南:3步免费获取完整高级功能DeepSeek-R1-Distill-Qwen-32B技术揭秘:小模型如何实现大模型性能突破音频修复终极指南:让每一段受损声音重获新生
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
539
3.76 K
Ascend Extension for PyTorch
Python
349
414
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
889
609
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
338
185
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
252
openGauss kernel ~ openGauss is an open source relational database management system
C++
169
233
暂无简介
Dart
778
193
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
114
140
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.35 K
758