Olive项目中使用BGE模型在Snapdragon NPU上的优化实践
2025-07-07 07:39:20作者:明树来
背景介绍
微软开源的Olive项目是一个专注于模型优化的工具集,能够帮助开发者将各种深度学习模型转换为适合不同硬件平台的高效形式。本文将分享在使用Olive优化BGE(BAAI/bge-small-en-v1.5)模型并在高通Snapdragon NPU上部署时遇到的技术挑战和解决方案。
技术挑战
在将BGE模型优化为适用于Snapdragon NPU的QNN格式时,开发者遇到了几个关键问题:
- 算子支持问题:原始模型中的Unsqueeze、Expand和Cast等算子无法在NPU上直接运行,导致模型执行失败
- 性能权衡:在启用CPU回退机制时,虽然解决了算子支持问题,但带来了额外的数据传输开销
- 输入尺寸影响:不同输入长度下,NPU加速效果差异显著
优化方案
模型转换流程
通过Olive工具链,我们采用了以下优化步骤:
- 使用HuggingFace模型作为输入源
- 转换为ONNX格式并固定输入形状
- 执行图手术操作,替换Attention Mask值
- QNN预处理阶段,包括LayerNorm融合
- 量化处理,激活值使用QUInt16,权重使用QUInt8
关键配置调整
在优化过程中,以下几个配置项对最终效果影响显著:
- 输入形状设置:初始设置为[1,128],后调整为[1,512]以获得更好的NPU利用率
- 量化参数:选择MinMax校准方法确保精度损失最小
- 执行提供者配置:权衡NPU专用加速和CPU回退机制
性能分析
经过多次测试验证,我们获得了以下性能数据:
-
短文本输入(128 tokens):
- 纯CPU执行:约20ms
- NPU+CPU回退:约27ms
-
长文本输入(512 tokens):
- 纯CPU执行:约187ms
- NPU+CPU回退:约77ms
从数据可以看出,对于较长的输入序列,NPU加速效果更为明显,实现了2.4倍的性能提升。这表明NPU在高计算量场景下能够更好地发挥其并行计算优势。
经验总结
- 算子兼容性:并非所有ONNX算子都能被NPU原生支持,需要提前验证关键路径
- 输入尺寸选择:合理设置输入长度对性能影响很大,需要根据实际应用场景权衡
- 量化策略:不同的量化配置会影响模型精度和性能,需要多次实验找到最佳平衡点
- 评估流程:优化过程中的评估环节至关重要,应包含精度和延迟等多维度指标
未来改进方向
基于本次实践,我们认为还可以在以下方面进行深入探索:
- 进一步优化图结构,减少必须回退到CPU执行的算子数量
- 尝试不同的量化策略组合,寻找更优的精度-速度平衡点
- 开发自动化工具帮助选择最优输入尺寸配置
- 探索混合精度计算的可能性,在关键路径使用更高精度的数据类型
通过这次BGE模型在Snapdragon NPU上的优化实践,我们不仅解决了具体的技术问题,也为类似场景下的模型优化积累了宝贵经验。这些经验对于其他希望在移动端NPU上部署大型语言模型的开发者具有重要参考价值。
登录后查看全文
热门项目推荐
HunyuanImage-3.0
HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++043Hunyuan3D-Part
腾讯混元3D-Part00GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0289Hunyuan3D-Omni
腾讯混元3D-Omni:3D版ControlNet突破多模态控制,实现高精度3D资产生成00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
热门内容推荐
1 freeCodeCamp博客页面工作坊中的断言方法优化建议2 freeCodeCamp课程页面空白问题的技术分析与解决方案3 freeCodeCamp猫照片应用教程中的HTML注释测试问题分析4 freeCodeCamp全栈开发课程中React组件导出方式的衔接问题分析5 freeCodeCamp 课程中关于角色与职责描述的语法优化建议 6 freeCodeCamp全栈开发课程中测验游戏项目的参数顺序问题解析7 freeCodeCamp Cafe Menu项目中link元素的void特性解析8 freeCodeCamp英语课程填空题提示缺失问题分析9 freeCodeCamp全栈开发课程中React实验项目的分类修正10 freeCodeCamp课程中屏幕放大器知识点优化分析
最新内容推荐
QT连接阿里云MySQL数据库完整指南:从环境配置到问题解决 SteamVR 1.2.3 Unity插件:兼容Unity 2019及更低版本的VR开发终极解决方案 全球36个生物多样性热点地区KML矢量图资源详解与应用指南 电脑PC网易云音乐免安装皮肤插件使用指南:个性化音乐播放体验 PANTONE潘通AI色板库:设计师必备的色彩管理利器 ReportMachine.v7.0D5-XE10:Delphi报表生成利器深度解析与实战指南 瀚高迁移工具migration-4.1.4:企业级数据库迁移的智能解决方案 JDK 8u381 Windows x64 安装包:企业级Java开发环境的完美选择 SAP S4HANA物料管理资源全面解析:从入门到精通的完整指南 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南
项目优选
收起

deepin linux kernel
C
22
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
163
2.05 K

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
8
0

React Native鸿蒙化仓库
C++
199
279

🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
60
16

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
952
558

🔥🔥🔥ShopXO企业级免费开源商城系统,可视化DIY拖拽装修、包含PC、H5、多端小程序(微信+支付宝+百度+头条&抖音+QQ+快手)、APP、多仓库、多商户、多门店、IM客服、进销存,遵循MIT开源协议发布、基于ThinkPHP8框架研发
JavaScript
96
15

基于golang开发的网关。具有各种插件,可以自行扩展,即插即用。此外,它可以快速帮助企业管理API服务,提高API服务的稳定性和安全性。
Go
22
0

为非计算机科班出身 (例如财经类高校金融学院) 同学量身定制,新手友好,让学生以亲身实践开源开发的方式,学会使用计算机自动化自己的科研/创新工作。案例以量化投资为主线,涉及 Bash、Python、SQL、BI、AI 等全技术栈,培养面向未来的数智化人才 (如数据工程师、数据分析师、数据科学家、数据决策者、量化投资人)。
Python
77
71

喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
17
0