Olive项目中使用BGE模型在Snapdragon NPU上的优化实践
2025-07-07 07:39:20作者:明树来
背景介绍
微软开源的Olive项目是一个专注于模型优化的工具集,能够帮助开发者将各种深度学习模型转换为适合不同硬件平台的高效形式。本文将分享在使用Olive优化BGE(BAAI/bge-small-en-v1.5)模型并在高通Snapdragon NPU上部署时遇到的技术挑战和解决方案。
技术挑战
在将BGE模型优化为适用于Snapdragon NPU的QNN格式时,开发者遇到了几个关键问题:
- 算子支持问题:原始模型中的Unsqueeze、Expand和Cast等算子无法在NPU上直接运行,导致模型执行失败
- 性能权衡:在启用CPU回退机制时,虽然解决了算子支持问题,但带来了额外的数据传输开销
- 输入尺寸影响:不同输入长度下,NPU加速效果差异显著
优化方案
模型转换流程
通过Olive工具链,我们采用了以下优化步骤:
- 使用HuggingFace模型作为输入源
- 转换为ONNX格式并固定输入形状
- 执行图手术操作,替换Attention Mask值
- QNN预处理阶段,包括LayerNorm融合
- 量化处理,激活值使用QUInt16,权重使用QUInt8
关键配置调整
在优化过程中,以下几个配置项对最终效果影响显著:
- 输入形状设置:初始设置为[1,128],后调整为[1,512]以获得更好的NPU利用率
- 量化参数:选择MinMax校准方法确保精度损失最小
- 执行提供者配置:权衡NPU专用加速和CPU回退机制
性能分析
经过多次测试验证,我们获得了以下性能数据:
-
短文本输入(128 tokens):
- 纯CPU执行:约20ms
- NPU+CPU回退:约27ms
-
长文本输入(512 tokens):
- 纯CPU执行:约187ms
- NPU+CPU回退:约77ms
从数据可以看出,对于较长的输入序列,NPU加速效果更为明显,实现了2.4倍的性能提升。这表明NPU在高计算量场景下能够更好地发挥其并行计算优势。
经验总结
- 算子兼容性:并非所有ONNX算子都能被NPU原生支持,需要提前验证关键路径
- 输入尺寸选择:合理设置输入长度对性能影响很大,需要根据实际应用场景权衡
- 量化策略:不同的量化配置会影响模型精度和性能,需要多次实验找到最佳平衡点
- 评估流程:优化过程中的评估环节至关重要,应包含精度和延迟等多维度指标
未来改进方向
基于本次实践,我们认为还可以在以下方面进行深入探索:
- 进一步优化图结构,减少必须回退到CPU执行的算子数量
- 尝试不同的量化策略组合,寻找更优的精度-速度平衡点
- 开发自动化工具帮助选择最优输入尺寸配置
- 探索混合精度计算的可能性,在关键路径使用更高精度的数据类型
通过这次BGE模型在Snapdragon NPU上的优化实践,我们不仅解决了具体的技术问题,也为类似场景下的模型优化积累了宝贵经验。这些经验对于其他希望在移动端NPU上部署大型语言模型的开发者具有重要参考价值。
登录后查看全文
热门项目推荐
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~059CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。07GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0381- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
1 freeCodeCamp Cafe Menu项目中link元素的void特性解析2 freeCodeCamp全栈开发课程中React实验项目的分类修正3 freeCodeCamp英语课程视频测验选项与提示不匹配问题分析4 freeCodeCamp课程中屏幕放大器知识点优化分析5 freeCodeCamp课程页面空白问题的技术分析与解决方案6 freeCodeCamp课程视频测验中的Tab键导航问题解析7 freeCodeCamp JavaScript高阶函数中的对象引用陷阱解析8 freeCodeCamp博客页面工作坊中的断言方法优化建议9 freeCodeCamp猫照片应用教程中的HTML注释测试问题分析10 freeCodeCamp全栈开发课程中测验游戏项目的参数顺序问题解析
最新内容推荐
OMNeT++中文使用手册:网络仿真的终极指南与实用教程 基于Matlab的等几何分析IGA软件包:工程计算与几何建模的完美融合 PADS元器件位号居中脚本:提升PCB设计效率的自动化利器 电脑PC网易云音乐免安装皮肤插件使用指南:个性化音乐播放体验 Python Django图书借阅管理系统:高效智能的图书馆管理解决方案 Python开发者的macOS终极指南:VSCode安装配置全攻略 WebVideoDownloader:高效网页视频抓取工具全面使用指南 ReportMachine.v7.0D5-XE10:Delphi报表生成利器深度解析与实战指南 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 海康威视DS-7800N-K1固件升级包全面解析:提升安防设备性能的关键资源
项目优选
收起

本仓将为广大高校开发者提供开源实践和创新开发平台,收集和展示openHiTLS示例代码及创新应用,欢迎大家投稿,让全世界看到您的精巧密码实现设计,也让更多人通过您的优秀成果,理解、喜爱上密码技术。
C
53
468

deepin linux kernel
C
22
5

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
7
0

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
878
517

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
336
1.1 K

React Native鸿蒙化仓库
C++
180
264

一个高性能、可扩展、轻量、省心的仓颉Web框架。Rest, 宏路由,Json, 中间件,参数绑定与校验,文件上传下载,MCP......
Cangjie
87
14

为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.08 K
0

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
349
381

🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
612
60