PyTorch-TensorRT 模型导出与保存问题解析
2025-06-29 09:58:04作者:丁柯新Fawn
问题背景
在使用PyTorch-TensorRT进行模型编译和导出时,开发者经常会遇到一些技术难题。本文将以ResNet50模型为例,深入分析两种常见的模型导出方式及其解决方案。
方法一:直接使用TorchScript保存
第一种方法尝试使用torch.jit.trace
直接保存编译后的TensorRT模型:
model = resnet50().eval().to('cuda')
inputs = [torch.randn((1, 3, 224, 224)).cuda()]
trt_gm = torch_tensorrt.compile(model, ir="dynamo", inputs=inputs)
trt_traced_model = torch.jit.trace(trt_gm, inputs)
torch.jit.save(trt_traced_model, "trt_model.ts")
这种方法会报错RuntimeError: Could not get name of python class object
,原因是编译后的TensorRT模型对象无法被TorchScript正确识别和序列化。
方法二:使用ExportedProgram保存
第二种方法尝试使用PyTorch 2.x的导出机制:
trt_gm = torch_tensorrt.compile(model, ir="dynamo", inputs=inputs)
trt_exp_program = torch_tensorrt.dynamo.export(trt_gm, inputs, 'ep')
torch.export.save(trt_exp_program, "trt_model.ep")
这种方法会报错AttributeError: 'ExportedProgram' object has no attribute 'named_children'
,表明ExportedProgram对象与TensorRT编译后的模型存在兼容性问题。
解决方案
PyTorch-TensorRT 2.3版本引入了专门的保存API来解决这些问题:
torch_tensorrt.save(
trt_gm,
file_path="/path/to/model.ts",
inputs=inputs,
output_format="torchscript"
)
这个API专门针对TensorRT编译后的模型进行了优化,能够正确处理模型序列化过程中的各种特殊情况。
技术要点
-
模型编译过程:TensorRT会对PyTorch模型进行优化和转换,生成特殊的执行引擎,这使得传统的保存方法可能失效。
-
版本兼容性:PyTorch 2.x的导出机制与TensorRT需要特定的适配层,2.3版本之前缺少这种适配。
-
最佳实践:对于TensorRT编译后的模型,应优先使用框架提供的专用保存API,而不是通用的PyTorch保存方法。
总结
在使用PyTorch-TensorRT时,模型保存是一个需要特别注意的环节。开发者应确保:
- 使用最新版本的PyTorch-TensorRT
- 遵循官方推荐的保存方式
- 理解不同保存格式的适用场景
通过正确的方法,可以确保TensorRT优化后的模型能够被持久化保存并在不同环境中稳定运行。
登录后查看全文
热门项目推荐
HunyuanImage-3.0
HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0370Hunyuan3D-Part
腾讯混元3D-Part00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0102AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起

deepin linux kernel
C
22
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
205
2.19 K

暂无简介
Dart
514
115

Ascend Extension for PyTorch
Python
62
95

本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
550
86

React Native鸿蒙化仓库
C++
208
285

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
976
576

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
399

openGauss kernel ~ openGauss is an open source relational database management system
C++
146
193