HeavyDB 开源项目教程
1. 项目介绍
HeavyDB(原名 OmniSciDB)是一个开源的基于 SQL 的关系型列式数据库引擎,它充分利用现代硬件(包括 CPU 和 GPU)的性能和并行性,能够在毫秒级时间内查询数十亿行数据集,而无需索引、预聚合或降采样。HeavyDB 可以在混合 CPU/GPU 系统(目前支持 Nvidia GPU)以及仅 CPU 系统(支持 X86、Power 和 ARM 架构,实验性支持)上运行。为了实现最佳性能,HeavyDB 在存储、CPU 内存和 GPU 内存之间实现了多级数据缓存,并采用了创新的即时(JIT)查询编译框架。
2. 项目快速启动
2.1 安装依赖
在首次构建 HeavyDB 之前,请确保安装了所有必要的依赖项。以下是一些关键依赖项:
- CMake
- GCC 或 Clang
- CUDA(如果使用 GPU)
- Folly
- Google Test
2.2 构建 HeavyDB
-
创建并进入构建目录:
mkdir build cd build
-
运行 CMake 配置构建:
cmake -DCMAKE_BUILD_TYPE=debug ..
-
编译项目:
make -j 4
2.3 运行测试
HeavyDB 使用 Google Test 作为其主要测试框架。以下是运行测试的命令:
make sanity_tests
3. 应用案例和最佳实践
3.1 金融数据分析
HeavyDB 在金融数据分析中表现出色,能够快速处理大规模的交易数据和市场数据。通过利用 GPU 的并行计算能力,HeavyDB 可以在毫秒级时间内完成复杂的数据查询和分析任务。
3.2 地理空间数据处理
HeavyDB 支持地理空间数据的存储和查询,适用于需要处理大量地理空间数据的应用场景,如城市规划、交通管理和环境监测。
3.3 实时数据处理
HeavyDB 的高性能查询能力使其成为实时数据处理应用的理想选择,如实时监控系统、实时推荐系统和实时分析平台。
4. 典型生态项目
4.1 Calcite
Calcite 是一个开源的 SQL 解析和优化框架,HeavyDB 使用 Calcite 进行 SQL 查询的解析和优化,确保查询的高效执行。
4.2 Folly
Folly 是 Facebook 开源的高性能 C++ 库集合,HeavyDB 使用 Folly 提供的各种工具和组件来提升系统的性能和稳定性。
4.3 Google Test
Google Test 是一个广泛使用的 C++ 单元测试框架,HeavyDB 使用 Google Test 进行单元测试,确保代码的正确性和稳定性。
通过本教程,您应该能够快速上手 HeavyDB 项目,并了解其在不同应用场景中的最佳实践和典型生态项目。
PaddleOCR-VL
PaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
openPangu-Ultra-MoE-718B-V1.1
昇腾原生的开源盘古 Ultra-MoE-718B-V1.1 语言模型Python00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0128AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile011
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
热门内容推荐
最新内容推荐
项目优选









