PyTorch Stable Diffusion 项目教程
2026-01-23 04:20:34作者:庞眉杨Will
1. 项目介绍
PyTorch Stable Diffusion 是一个基于 PyTorch 框架实现的 Stable Diffusion 模型。Stable Diffusion 是一种用于生成高质量图像的深度学习模型,广泛应用于图像生成、图像修复等领域。该项目从零开始实现 Stable Diffusion 模型,提供了完整的代码和详细的文档,方便开发者理解和使用。
2. 项目快速启动
2.1 环境准备
首先,确保你已经安装了以下依赖:
- Python 3.7+
- PyTorch 1.8+
- CUDA(如果使用GPU)
你可以通过以下命令安装 PyTorch:
pip install torch torchvision torchaudio
2.2 克隆项目
使用以下命令克隆项目到本地:
git clone https://github.com/hkproj/pytorch-stable-diffusion.git
cd pytorch-stable-diffusion
2.3 下载模型权重和分词器文件
你需要从 Hugging Face 下载模型权重和分词器文件,并将其保存到 data 文件夹中。
mkdir data
cd data
# 下载 vocab.json 和 merges.txt
wget https://huggingface.co/runwayml/stable-diffusion-v1-5/raw/main/tokenizer/vocab.json
wget https://huggingface.co/runwayml/stable-diffusion-v1-5/raw/main/tokenizer/merges.txt
# 下载 v1-5-pruned-emaonly.ckpt
wget https://huggingface.co/runwayml/stable-diffusion-v1-5/resolve/main/v1-5-pruned-emaonly.ckpt
2.4 运行示例代码
在项目根目录下,运行以下代码以生成图像:
import torch
from stable_diffusion import StableDiffusion
# 加载模型
model = StableDiffusion(device="cuda" if torch.cuda.is_available() else "cpu")
# 生成图像
prompt = "A futuristic cityscape at sunset"
image = model.generate(prompt)
# 保存图像
image.save("output.png")
3. 应用案例和最佳实践
3.1 图像生成
Stable Diffusion 可以用于生成各种类型的图像,如风景、人物、抽象艺术等。你可以通过调整输入的提示词(prompt)来生成不同风格的图像。
3.2 图像修复
Stable Diffusion 还可以用于图像修复,通过输入带有缺失部分的图像,模型可以生成缺失部分的图像内容。
3.3 最佳实践
- 数据预处理:在生成图像之前,确保输入的提示词清晰且具体,以获得更好的生成效果。
- 模型微调:如果你有特定的数据集,可以对模型进行微调,以生成更符合你需求的图像。
4. 典型生态项目
4.1 Hugging Face Diffusers
Hugging Face 的 Diffusers 库提供了多种扩散模型的实现,包括 Stable Diffusion。你可以通过该库快速加载和使用预训练的扩散模型。
4.2 CompVis Stable Diffusion
CompVis 团队开发的 Stable Diffusion 模型是该领域的先驱之一,提供了丰富的资源和文档,帮助开发者理解和使用 Stable Diffusion 模型。
4.3 Stable Diffusion TensorFlow
如果你更熟悉 TensorFlow,可以参考 stable-diffusion-tensorflow 项目,该项目提供了 Stable Diffusion 的 TensorFlow 实现。
通过这些生态项目,你可以更深入地理解和应用 Stable Diffusion 模型,实现更多有趣的应用。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
热门内容推荐
最新内容推荐
Degrees of Lewdity中文汉化终极指南:零基础玩家必看的完整教程Unity游戏翻译神器:XUnity Auto Translator 完整使用指南PythonWin7终极指南:在Windows 7上轻松安装Python 3.9+终极macOS键盘定制指南:用Karabiner-Elements提升10倍效率Pandas数据分析实战指南:从零基础到数据处理高手 Qwen3-235B-FP8震撼升级:256K上下文+22B激活参数7步搞定机械键盘PCB设计:从零开始打造你的专属键盘终极WeMod专业版解锁指南:3步免费获取完整高级功能DeepSeek-R1-Distill-Qwen-32B技术揭秘:小模型如何实现大模型性能突破音频修复终极指南:让每一段受损声音重获新生
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
537
3.76 K
暂无简介
Dart
773
192
Ascend Extension for PyTorch
Python
343
405
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.34 K
755
🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
1.07 K
97
React Native鸿蒙化仓库
JavaScript
303
356
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
337
180
AscendNPU-IR
C++
86
142
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
987
249