推荐文章:探索多智能体强化学习的PyTorch实现——MARL-code-pytorch
2024-05-20 19:03:41作者:宣聪麟
推荐文章:探索多智能体强化学习的PyTorch实现——MARL-code-pytorch
1、项目介绍
MARL-code-pytorch 是一个简洁的Python库,它为多智能体强化学习(MARL)算法提供了PyTorch实现,包括MAPPO、MADDPG、MATD3、QMIX和VDN等。这个项目的目标是让研究者和开发者能够更方便地在多智能体环境中进行实验和学习,无论是离散动作空间还是连续动作空间,都能轻松应对。
2、项目技术分析
MAPPO(Multi-agent Advantage Policy Optimization)是一种高效的多智能体强化学习算法,适用于离散和连续动作空间。MADDPG 和 MATD3 主要处理连续动作空间的问题,通过协同学习策略优化智能体的行为。而 QMIX 和 VDN 则是两种用于联合价值分解的算法,它们允许在大型多智能体系统中有效地学习全局目标。
项目中还对MPE(Multi-Agent Particle World)环境做了一些小修改,以适应不同动作空间的需求。通过添加discrete参数,用户可以根据需求选择离散或连续动作空间。
3、项目及技术应用场景
此项目适合于以下场景:
- 学术研究:对于多智能体系统的研究,例如分布式控制、群体行为模拟以及协作问题,可以借助这个库快速实验和验证新算法。
- 游戏AI:在如《星际争霸II》(SMAC)这样的多人在线游戏中,这些算法可用于训练高度协调的团队策略。
- 机器人协作:在多机器人协作任务中,如路径规划和物品搬运,该库中的算法能帮助智能体学习协同行为。
4、项目特点
- 易用性:提供清晰的代码结构,便于理解和复用,同时也支持直接运行示例进行快速实验。
- 全面性:覆盖了多种主流的多智能体强化学习算法,满足不同的学习任务需求。
- 灵活性:支持离散和连续动作空间,可应用于各种复杂的多智能体环境。
- 可视化:训练结果以图像形式展示,直观呈现算法的学习过程和性能。
总的来说,MARL-code-pytorch 是一个强大的工具,为多智能体强化学习的研究和开发提供了便利。如果你正寻找一个能够快速上手并深入理解的MARL库,那么这个项目绝对值得你尝试。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
STM32到GD32项目移植完全指南:从兼容性到实战技巧 开源电子设计自动化利器:KiCad EDA全方位使用指南 Python案例资源下载 - 从入门到精通的完整项目代码合集 网页设计期末大作业资源包 - 一站式解决方案助力高效完成项目 ONVIF设备模拟器:开发测试必备的智能安防仿真工具 昆仑通态MCGS与台达VFD-M变频器通讯程序详解:工业自动化控制完美解决方案 STDF-View解析查看软件:半导体测试数据分析的终极工具指南 MQTT 3.1.1协议中文版文档:物联网开发者的必备技术指南 Windows版Redis 5.0.14下载资源:高效内存数据库的完美Windows解决方案 TJSONObject完整解析教程:Delphi开发者必备的JSON处理指南
项目优选
收起
deepin linux kernel
C
24
9
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
392
3.88 K
暂无简介
Dart
671
155
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
React Native鸿蒙化仓库
JavaScript
260
322
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
661
310
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.19 K
653
无需学习 Kubernetes 的容器平台,在 Kubernetes 上构建、部署、组装和管理应用,无需 K8s 专业知识,全流程图形化管理
Go
15
1