Apache Fury 中 ThreadPoolFury 的 ClassLoader 问题解析
2025-06-25 14:49:02作者:霍妲思
背景介绍
Apache Fury 是一个高性能的序列化框架,在 Java 生态中提供了高效的二进制序列化能力。其中 ThreadPoolFury 是其线程安全的 Fury 实现,用于多线程环境下的序列化操作。然而,近期发现了一个与 ClassLoader 相关的重要问题,特别是在处理动态代理对象时。
问题现象
当使用 ThreadPoolFury 序列化和反序列化动态代理对象时,如果代理接口是由不同于当前线程上下文类加载器的类加载器加载的,就会抛出"non-public interface is not defined by the given loader"异常。这种情况常见于 Spring Boot 应用中,当 Spring 的 SerializableTypeWrapper 创建代理时使用应用类加载器(AppClassLoader),而 ThreadPoolFury 在反序列化时却使用了 Tomcat 的嵌入式类加载器(TomcatEmbeddedClassLoader)。
问题根源
深入分析后发现,ThreadPoolFury 存在两个关键问题:
- 它没有正确继承 FuryBuilder 中设置的类加载器,而是默认使用线程上下文类加载器(Thread.currentThread().getContextClassLoader())
- 在反序列化动态代理时,Proxy.newProxyInstance() 方法要求接口类必须由指定的类加载器定义,否则会抛出异常
解决方案
Apache Fury 项目组已经修复了这个问题,主要改进包括:
- 确保 ThreadPoolFury 正确使用 FuryBuilder 中配置的类加载器
- 提供了更灵活的类加载器设置方式,允许开发者根据需求选择:
- 全局固定类加载器(通过 FuryBuilder.withClassLoader())
- 线程级类加载器(通过 ThreadSafeFury.setClassLoader())
- 自定义类加载器策略(通过 ThreadPoolFury 构造函数)
最佳实践
对于需要使用 ThreadPoolFury 处理动态代理的场景,建议采用以下方式:
// 方式1:使用固定类加载器
ThreadSafeFury fury = Fury.builder()
.withClassLoader(myClassLoader) // 设置固定类加载器
.buildThreadSafeFuryPool();
// 方式2:自定义类加载策略
ThreadSafeFury fury = new ThreadPoolFury(classloader ->
Fury.builder()
.withClassLoader(myClassLoader) // 每个线程使用相同的类加载器
.build()
);
技术要点
- Java 动态代理机制对类加载器的要求非常严格,接口类必须由指定的类加载器定义
- 在多线程环境下,线程上下文类加载器可能与创建代理时的类加载器不同
- 序列化框架需要确保序列化和反序列化时使用一致的类加载器上下文
总结
这个问题揭示了在复杂类加载环境下处理动态代理对象的挑战。Apache Fury 的修复确保了框架在不同类加载器环境下的稳定性,特别是对于 Spring 等框架生成的代理对象的支持。开发者在使用时应当注意类加载器的设置,特别是在容器环境中。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C095
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python058
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
AgentCPM-Explore没有万亿参数的算力堆砌,没有百万级数据的暴力灌入,清华大学自然语言处理实验室、中国人民大学、面壁智能与 OpenBMB 开源社区联合研发的 AgentCPM-Explore 智能体模型基于仅 4B 参数的模型,在深度探索类任务上取得同尺寸模型 SOTA、越级赶上甚至超越 8B 级 SOTA 模型、比肩部分 30B 级以上和闭源大模型的效果,真正让大模型的长程任务处理能力有望部署于端侧。Jinja00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
476
3.54 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
223
94
暂无简介
Dart
726
175
React Native鸿蒙化仓库
JavaScript
287
339
Ascend Extension for PyTorch
Python
284
317
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.27 K
701
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
849
441
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19