Amazon EKS AMI v20250304版本发布:容器化基础设施的重要更新
Amazon EKS AMI(Amazon Elastic Kubernetes Service Amazon Machine Image)是AWS为Kubernetes集群节点提供的官方镜像,它包含了运行容器化工作负载所需的所有组件和配置。这些预配置的AMI镜像大大简化了在AWS上部署和管理Kubernetes集群的复杂度,确保了节点环境的标准化和安全性。
核心更新内容
本次发布的v20250304版本带来了多项重要更新,主要涉及以下几个方面:
-
Kubernetes版本支持:全面支持从1.25到1.32的多个Kubernetes版本,包括1.25.16、1.26.15、1.27.16、1.28.15、1.29.13、1.30.9、1.31.5和1.32.1等。这种多版本支持策略使得用户可以根据自身需求选择合适的Kubernetes版本,既保证了新功能的可用性,又确保了生产环境的稳定性。
-
容器运行时升级:所有镜像中的containerd版本已升级至1.7.25,这是一个重要的容器运行时更新,包含了性能优化和安全修复。containerd作为Kubernetes默认的容器运行时,其稳定性和性能直接影响整个集群的运行效率。
-
安全增强:内核版本在AL2(Amazon Linux 2)上升级至5.10.234-225.895,在AL2023(Amazon Linux 2023)上升级至6.1.128-136.201。这些更新包含了最新的安全补丁和性能改进,为运行容器工作负载提供了更安全的基础环境。
架构与操作系统支持
Amazon EKS AMI v20250304版本继续保持了广泛的兼容性支持:
-
处理器架构:同时支持x86_64和ARM64架构,用户可以根据工作负载特性和成本考虑选择合适的处理器类型。ARM架构在部分工作负载上能提供更好的性价比。
-
操作系统:
- Amazon Linux 2(AL2):成熟的LTS版本,适合需要长期稳定支持的环境
- Amazon Linux 2023(AL2023):最新的Amazon Linux发行版,包含更多现代特性和优化
-
特殊工作负载支持:
- GPU加速:为需要GPU加速的工作负载提供了专门的NVIDIA驱动和工具链支持
- AI/ML优化:通过Neuron驱动支持AWS Inferentia芯片,优化机器学习推理工作负载
关键组件版本
本次更新中,几个关键组件的版本值得关注:
-
runc:AL2上为1.1.14版本,AL2023上为1.2.4版本。作为低层容器运行时,runc的更新带来了更好的安全性和资源隔离能力。
-
NVIDIA驱动:GPU节点上的驱动版本为550.144.03(AL2)和560.35.05(AL2023),这些驱动经过AWS专门测试和优化,确保在EC2实例上提供最佳的GPU性能。
-
AWS Neuron:版本2.19.64.0,为机器学习推理工作负载提供了深度优化。
技术选型建议
对于正在规划或升级Kubernetes集群的用户,建议考虑以下几点:
-
版本选择:生产环境推荐使用1.28或1.29等较为成熟的Kubernetes版本,它们经过了充分测试并拥有长期支持。对于需要最新特性的环境,可以考虑1.31或1.32。
-
操作系统选择:新部署建议使用Amazon Linux 2023,它提供了更新的内核和软件包,安全性更好。现有集群如果运行在AL2上,可以考虑在合适的时机迁移。
-
特殊工作负载:对于AI/ML工作负载,建议使用专门的Neuron或GPU优化镜像,它们包含了必要的驱动和工具链,可以显著提升性能。
升级注意事项
在升级到v20250304版本时,运维团队需要注意:
-
兼容性测试:在正式升级前,应在测试环境中验证应用兼容性,特别是使用特定内核特性或驱动的工作负载。
-
滚动升级策略:生产环境应采用滚动升级方式,逐步替换节点,确保服务连续性。
-
监控与回滚计划:升级后密切监控系统指标和应用性能,准备好回滚方案以防意外情况。
总结
Amazon EKS AMI v20250304版本的发布,为Kubernetes用户带来了更安全、更稳定的基础环境。通过支持多种Kubernetes版本和处理器架构,以及针对不同工作负载的优化镜像,AWS继续强化其容器服务的全面性和专业性。对于运行在AWS上的Kubernetes工作负载,及时更新到官方推荐的最新AMI版本,是保障安全性和性能的最佳实践。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00