首页
/ 推荐文章:CODA-Prompt - 无排练持续学习的新里程碑

推荐文章:CODA-Prompt - 无排练持续学习的新里程碑

2024-06-25 11:36:26作者:裴锟轩Denise

项目介绍

CODA-Prompt,全称为COntinual Decomposed Attention-based Prompting,是一项在CVPR 2023上发表的创新性研究,它解决了计算机视觉模型在连续变化训练数据下的灾难性遗忘问题。这项工作提出了一种无需复排(rehearsal)的学习方法,通过构建基于注意力的分解式提示(prompting),实现了对大型预训练视觉Transformer模型的有效增强。

CODA-Prompt 方法架构

项目技术分析

CODA-Prompt的核心在于其端到端训练的输入条件化提示组件。传统的提示方法依赖于静态的关键-查询机制,这限制了模型的可塑性和新任务的准确性。相比之下,CODA-Prompt学习一组提示组件,并根据输入动态地组合这些组件以生成输入条件化的提示,实现了一个全新的关注点生成方案。这种新的设计不仅增强了模型的记忆力,还提高了其学习新任务的能力。

应用场景

CODA-Prompt适用于各种实际场景中的无排练持续学习,包括但不限于:

  1. 多任务环境:在不断引入新任务的情况下,模型能够保持对旧任务的准确预测,而不会忘记已学知识。
  2. 数据隐私保护:无需存储和重复使用旧数据,从而避免了对数据隐私的侵犯。
  3. 领域适应:在面临不同数据域转换时,例如从CIFAR-100到ImageNet-R或DomainNet的迁移,模型可以自适应并保持性能。

项目特点

  • 高效记忆:通过端到端训练的输入条件化提示,模型能有效抵抗灾难性遗忘,保持长期记忆。
  • 高适应性:即使在复杂的任务序列中,也能保持对新任务的高准确率。
  • 资源友好:与基于复排的方法相比,CODA-Prompt不需要额外的存储空间来保留旧数据。
  • 易于扩展:只需修改models/zoo.pylearners/prompt.py,开发者就可以轻松创建自己的提示方法,促进了未来的研究和发展。

使用步骤

安装环境后,只需要简单几步即可开始训练:

sh experiments/cifar100.sh
sh experiments/imagenet-r.sh
sh experiments/domainnet.sh

训练结果将保存在outputs/目录下,平均准确性可在global.yaml文件中查看。

结语

CODA-Prompt是无排练持续学习领域的突破,它的创新性和实用性使其成为任何关注数据效率和隐私保护的开发者的理想选择。我们鼓励您尝试这个项目,并期待看到您在这个基础上可能实现的新成果。记得在您的研究中引用CODA-Prompt,以支持和推广这一前沿技术!

@InProceedings{Smith_2023_CVPR,
  author    = {Smith, James Seale and Karlinsky, Leonid and Gutta, Vyshnavi and Cascante-Bonilla, Paola and Kim, Donghyun and Arbelle, Assaf and Panda, Rameswar and Feris, Rogerio and Kira, Zsolt},
  title     = {CODA-Prompt: COntinual Decomposed Attention-Based Prompting for Rehearsal-Free Continual Learning},
  booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
  month     = {June},
  year      = {2023},
  pages     = {11909-11919}
}
登录后查看全文
热门项目推荐