推荐文章:CODA-Prompt - 无排练持续学习的新里程碑
2024-06-25 11:36:26作者:裴锟轩Denise
项目介绍
CODA-Prompt,全称为COntinual Decomposed Attention-based Prompting,是一项在CVPR 2023上发表的创新性研究,它解决了计算机视觉模型在连续变化训练数据下的灾难性遗忘问题。这项工作提出了一种无需复排(rehearsal)的学习方法,通过构建基于注意力的分解式提示(prompting),实现了对大型预训练视觉Transformer模型的有效增强。

项目技术分析
CODA-Prompt的核心在于其端到端训练的输入条件化提示组件。传统的提示方法依赖于静态的关键-查询机制,这限制了模型的可塑性和新任务的准确性。相比之下,CODA-Prompt学习一组提示组件,并根据输入动态地组合这些组件以生成输入条件化的提示,实现了一个全新的关注点生成方案。这种新的设计不仅增强了模型的记忆力,还提高了其学习新任务的能力。
应用场景
CODA-Prompt适用于各种实际场景中的无排练持续学习,包括但不限于:
- 多任务环境:在不断引入新任务的情况下,模型能够保持对旧任务的准确预测,而不会忘记已学知识。
- 数据隐私保护:无需存储和重复使用旧数据,从而避免了对数据隐私的侵犯。
- 领域适应:在面临不同数据域转换时,例如从CIFAR-100到ImageNet-R或DomainNet的迁移,模型可以自适应并保持性能。
项目特点
- 高效记忆:通过端到端训练的输入条件化提示,模型能有效抵抗灾难性遗忘,保持长期记忆。
- 高适应性:即使在复杂的任务序列中,也能保持对新任务的高准确率。
- 资源友好:与基于复排的方法相比,CODA-Prompt不需要额外的存储空间来保留旧数据。
- 易于扩展:只需修改
models/zoo.py和learners/prompt.py,开发者就可以轻松创建自己的提示方法,促进了未来的研究和发展。
使用步骤
安装环境后,只需要简单几步即可开始训练:
sh experiments/cifar100.sh
sh experiments/imagenet-r.sh
sh experiments/domainnet.sh
训练结果将保存在outputs/目录下,平均准确性可在global.yaml文件中查看。
结语
CODA-Prompt是无排练持续学习领域的突破,它的创新性和实用性使其成为任何关注数据效率和隐私保护的开发者的理想选择。我们鼓励您尝试这个项目,并期待看到您在这个基础上可能实现的新成果。记得在您的研究中引用CODA-Prompt,以支持和推广这一前沿技术!
@InProceedings{Smith_2023_CVPR,
author = {Smith, James Seale and Karlinsky, Leonid and Gutta, Vyshnavi and Cascante-Bonilla, Paola and Kim, Donghyun and Arbelle, Assaf and Panda, Rameswar and Feris, Rogerio and Kira, Zsolt},
title = {CODA-Prompt: COntinual Decomposed Attention-Based Prompting for Rehearsal-Free Continual Learning},
booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
month = {June},
year = {2023},
pages = {11909-11919}
}
登录后查看全文
热门项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
热门内容推荐
最新内容推荐
Degrees of Lewdity中文汉化终极指南:零基础玩家必看的完整教程Unity游戏翻译神器:XUnity Auto Translator 完整使用指南PythonWin7终极指南:在Windows 7上轻松安装Python 3.9+终极macOS键盘定制指南:用Karabiner-Elements提升10倍效率Pandas数据分析实战指南:从零基础到数据处理高手 Qwen3-235B-FP8震撼升级:256K上下文+22B激活参数7步搞定机械键盘PCB设计:从零开始打造你的专属键盘终极WeMod专业版解锁指南:3步免费获取完整高级功能DeepSeek-R1-Distill-Qwen-32B技术揭秘:小模型如何实现大模型性能突破音频修复终极指南:让每一段受损声音重获新生
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
537
3.75 K
暂无简介
Dart
773
191
Ascend Extension for PyTorch
Python
343
406
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.34 K
755
🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
1.07 K
97
React Native鸿蒙化仓库
JavaScript
303
355
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
337
179
AscendNPU-IR
C++
86
141
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
248