推荐文章:CODA-Prompt - 无排练持续学习的新里程碑
2024-06-25 11:36:26作者:裴锟轩Denise
项目介绍
CODA-Prompt,全称为COntinual Decomposed Attention-based Prompting,是一项在CVPR 2023上发表的创新性研究,它解决了计算机视觉模型在连续变化训练数据下的灾难性遗忘问题。这项工作提出了一种无需复排(rehearsal)的学习方法,通过构建基于注意力的分解式提示(prompting),实现了对大型预训练视觉Transformer模型的有效增强。
项目技术分析
CODA-Prompt的核心在于其端到端训练的输入条件化提示组件。传统的提示方法依赖于静态的关键-查询机制,这限制了模型的可塑性和新任务的准确性。相比之下,CODA-Prompt学习一组提示组件,并根据输入动态地组合这些组件以生成输入条件化的提示,实现了一个全新的关注点生成方案。这种新的设计不仅增强了模型的记忆力,还提高了其学习新任务的能力。
应用场景
CODA-Prompt适用于各种实际场景中的无排练持续学习,包括但不限于:
- 多任务环境:在不断引入新任务的情况下,模型能够保持对旧任务的准确预测,而不会忘记已学知识。
- 数据隐私保护:无需存储和重复使用旧数据,从而避免了对数据隐私的侵犯。
- 领域适应:在面临不同数据域转换时,例如从CIFAR-100到ImageNet-R或DomainNet的迁移,模型可以自适应并保持性能。
项目特点
- 高效记忆:通过端到端训练的输入条件化提示,模型能有效抵抗灾难性遗忘,保持长期记忆。
- 高适应性:即使在复杂的任务序列中,也能保持对新任务的高准确率。
- 资源友好:与基于复排的方法相比,CODA-Prompt不需要额外的存储空间来保留旧数据。
- 易于扩展:只需修改
models/zoo.py
和learners/prompt.py
,开发者就可以轻松创建自己的提示方法,促进了未来的研究和发展。
使用步骤
安装环境后,只需要简单几步即可开始训练:
sh experiments/cifar100.sh
sh experiments/imagenet-r.sh
sh experiments/domainnet.sh
训练结果将保存在outputs/
目录下,平均准确性可在global.yaml
文件中查看。
结语
CODA-Prompt是无排练持续学习领域的突破,它的创新性和实用性使其成为任何关注数据效率和隐私保护的开发者的理想选择。我们鼓励您尝试这个项目,并期待看到您在这个基础上可能实现的新成果。记得在您的研究中引用CODA-Prompt,以支持和推广这一前沿技术!
@InProceedings{Smith_2023_CVPR,
author = {Smith, James Seale and Karlinsky, Leonid and Gutta, Vyshnavi and Cascante-Bonilla, Paola and Kim, Donghyun and Arbelle, Assaf and Panda, Rameswar and Feris, Rogerio and Kira, Zsolt},
title = {CODA-Prompt: COntinual Decomposed Attention-Based Prompting for Rehearsal-Free Continual Learning},
booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
month = {June},
year = {2023},
pages = {11909-11919}
}
热门项目推荐
- 国产编程语言蓝皮书《国产编程语言蓝皮书》-编委会工作区017
- nuttxApache NuttX is a mature, real-time embedded operating system (RTOS).C00
- qwerty-learner为键盘工作者设计的单词记忆与英语肌肉记忆锻炼软件 / Words learning and English muscle memory training software designed for keyboard workersTSX027
- 每日精选项目🔥🔥 01.17日推荐:一个开源电子商务平台,模块化和 API 优先🔥🔥 每日推荐行业内最新、增长最快的项目,快速了解行业最新热门项目动态~~026
- Cangjie-Examples本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。Cangjie045
- 毕方Talon工具本工具是一个端到端的工具,用于项目的生成IR并自动进行缺陷检测。Python039
- PDFMathTranslatePDF scientific paper translation with preserved formats - 基于 AI 完整保留排版的 PDF 文档全文双语翻译,支持 Google/DeepL/Ollama/OpenAI 等服务,提供 CLI/GUI/DockerPython05
- mybatis-plusmybatis 增强工具包,简化 CRUD 操作。 文档 http://baomidou.com 低代码组件库 http://aizuda.comJava03
- advanced-javaAdvanced-Java是一个Java进阶教程,适合用于学习Java高级特性和编程技巧。特点:内容深入、实例丰富、适合进阶学习。JavaScript0108
- taro开放式跨端跨框架解决方案,支持使用 React/Vue/Nerv 等框架来开发微信/京东/百度/支付宝/字节跳动/ QQ 小程序/H5/React Native 等应用。 https://taro.zone/TypeScript09
热门内容推荐
最新内容推荐
项目优选
收起
Python-100-Days
Python - 100天从新手到大师
Python
267
55
国产编程语言蓝皮书
《国产编程语言蓝皮书》-编委会工作区
65
17
Cangjie-Examples
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
196
45
openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
53
44
HarmonyOS-Examples
本仓将收集和展示仓颉鸿蒙应用示例代码,欢迎大家投稿,在仓颉鸿蒙社区展现你的妙趣设计!
Cangjie
268
69
qwerty-learner
为键盘工作者设计的单词记忆与英语肌肉记忆锻炼软件 / Words learning and English muscle memory training software designed for keyboard workers
TSX
333
27
CangjieCommunity
为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
896
0
advanced-java
Advanced-Java是一个Java进阶教程,适合用于学习Java高级特性和编程技巧。特点:内容深入、实例丰富、适合进阶学习。
JavaScript
419
108
MateChat
前端智能化场景解决方案UI库,轻松构建你的AI应用,我们将持续完善更新,欢迎你的使用与建议。
官网地址:https://matechat.gitcode.com
144
24
HarmonyOS-Cangjie-Cases
参考 HarmonyOS-Cases/Cases,提供仓颉开发鸿蒙 NEXT 应用的案例集
Cangjie
58
4