Pandas数据结构详解:Series与DataFrame核心概念解析
2025-05-31 02:57:08作者:邓越浪Henry
前言
在数据分析领域,pandas库提供了两种核心数据结构:Series和DataFrame。理解这些数据结构的特点和操作方法,是掌握pandas进行高效数据处理的关键。本文将深入解析这两种数据结构的特性和使用方法。
1. 准备工作
在开始前,我们需要导入必要的库:
import numpy as np
import pandas as pd
2. Series数据结构
2.1 Series基本概念
Series是pandas中最基本的一维数据结构,可以看作是一个带有标签的数组。它由两部分组成:
- 数据值(values):实际存储的数据
- 索引(index):与数据值对应的标签
2.2 创建Series
Series可以通过多种方式创建:
从ndarray创建
s = pd.Series(np.random.randn(5), index=['a', 'b', 'c', 'd', 'e'])
如果不指定索引,pandas会自动创建从0开始的整数索引。
从字典创建
d = {'b': 1, 'a': 0, 'c': 2}
pd.Series(d)
注意:在Python 3.6+和Pandas 0.23+版本中,Series会保留字典的插入顺序。
从标量值创建
pd.Series(5., index=['a', 'b', 'c', 'd', 'e'])
标量值会被复制以匹配索引长度。
2.3 Series操作特性
类似ndarray的操作
Series支持大多数NumPy数组操作:
s[0] # 获取第一个元素
s[:3] # 切片操作
s[s > 0.5] # 布尔索引
np.exp(s) # 应用NumPy函数
类似字典的操作
可以通过索引标签访问和修改值:
s['a'] = 10 # 修改值
'e' in s # 检查索引存在性
s.get('f', np.nan) # 安全获取
自动对齐特性
Series运算时会自动按标签对齐:
s1 = pd.Series([1,2,3], index=['a','b','c'])
s2 = pd.Series([4,5,6], index=['b','c','d'])
s1 + s2 # 结果会包含所有索引,不匹配的为NaN
名称属性
Series可以设置名称:
s = pd.Series(np.random.randn(5), name='my_series')
s.name = 'new_name' # 修改名称
3. DataFrame数据结构
3.1 DataFrame基本概念
DataFrame是二维的表格型数据结构,可以看作:
- 由多个Series组成的字典
- 类似电子表格或SQL表
- 每列可以是不同的数据类型
3.2 创建DataFrame
从字典创建
d = {'one': [1., 2., 3., 4.],
'two': [4., 3., 2., 1.]}
df = pd.DataFrame(d, index=['a', 'b', 'c', 'd'])
从结构化数组创建
data = np.zeros((2,), dtype=[('A', 'i4'), ('B', 'f4'), ('C', 'a10')])
pd.DataFrame(data)
从列表字典创建
data2 = [{'a': 1, 'b': 2}, {'a': 5, 'b': 10, 'c': 20}]
pd.DataFrame(data2)
3.3 DataFrame列操作
列的选择与修改
df['one'] # 选择列
df['three'] = df['one'] * df['two'] # 添加新列
del df['two'] # 删除列
列插入
df.insert(1, 'bar', df['one']) # 在指定位置插入列
3.4 链式操作方法
pandas提供了类似dplyr的链式操作:
(iris.query('SepalLength > 5')
.assign(SepalRatio=lambda x: x.SepalWidth / x.SepalLength)
.plot(kind='scatter', x='SepalRatio', y='PetalRatio'))
4. 核心特性总结
- 数据对齐:pandas操作会自动按标签对齐
- 缺失数据处理:使用NaN表示缺失值
- 灵活索引:支持多种索引方式
- 类型多样性:支持多种数据类型共存
5. 最佳实践建议
- 理解数据对齐机制可以避免许多常见错误
- 链式操作可以使代码更清晰易读
- 合理使用assign方法可以避免中间变量
- 注意Python版本对字典顺序的影响
通过掌握这些核心概念,你将能够更高效地使用pandas进行数据处理和分析。
登录后查看全文
热门项目推荐
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCRDeepSeek-OCR是一款以大语言模型为核心的开源工具,从LLM视角出发,探索视觉文本压缩的极限。Python00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Jinja00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
278
2.57 K
deepin linux kernel
C
24
6
React Native鸿蒙化仓库
JavaScript
223
302
Ascend Extension for PyTorch
Python
105
135
暂无简介
Dart
568
127
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
599
164
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.03 K
607
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
448
openGauss kernel ~ openGauss is an open source relational database management system
C++
154
205
一个用于服务器应用开发的综合工具库。
- 零配置文件
- 环境变量和命令行参数配置
- 约定优于配置
- 深刻利用仓颉语言特性
- 只需要开发动态链接库,fboot负责加载、初始化并运行。
Cangjie
280
26