Pandas数据结构详解:Series与DataFrame核心概念解析
2025-05-31 02:43:32作者:邓越浪Henry
前言
在数据分析领域,pandas库提供了两种核心数据结构:Series和DataFrame。理解这些数据结构的特点和操作方法,是掌握pandas进行高效数据处理的关键。本文将深入解析这两种数据结构的特性和使用方法。
1. 准备工作
在开始前,我们需要导入必要的库:
import numpy as np
import pandas as pd
2. Series数据结构
2.1 Series基本概念
Series是pandas中最基本的一维数据结构,可以看作是一个带有标签的数组。它由两部分组成:
- 数据值(values):实际存储的数据
- 索引(index):与数据值对应的标签
2.2 创建Series
Series可以通过多种方式创建:
从ndarray创建
s = pd.Series(np.random.randn(5), index=['a', 'b', 'c', 'd', 'e'])
如果不指定索引,pandas会自动创建从0开始的整数索引。
从字典创建
d = {'b': 1, 'a': 0, 'c': 2}
pd.Series(d)
注意:在Python 3.6+和Pandas 0.23+版本中,Series会保留字典的插入顺序。
从标量值创建
pd.Series(5., index=['a', 'b', 'c', 'd', 'e'])
标量值会被复制以匹配索引长度。
2.3 Series操作特性
类似ndarray的操作
Series支持大多数NumPy数组操作:
s[0] # 获取第一个元素
s[:3] # 切片操作
s[s > 0.5] # 布尔索引
np.exp(s) # 应用NumPy函数
类似字典的操作
可以通过索引标签访问和修改值:
s['a'] = 10 # 修改值
'e' in s # 检查索引存在性
s.get('f', np.nan) # 安全获取
自动对齐特性
Series运算时会自动按标签对齐:
s1 = pd.Series([1,2,3], index=['a','b','c'])
s2 = pd.Series([4,5,6], index=['b','c','d'])
s1 + s2 # 结果会包含所有索引,不匹配的为NaN
名称属性
Series可以设置名称:
s = pd.Series(np.random.randn(5), name='my_series')
s.name = 'new_name' # 修改名称
3. DataFrame数据结构
3.1 DataFrame基本概念
DataFrame是二维的表格型数据结构,可以看作:
- 由多个Series组成的字典
- 类似电子表格或SQL表
- 每列可以是不同的数据类型
3.2 创建DataFrame
从字典创建
d = {'one': [1., 2., 3., 4.],
'two': [4., 3., 2., 1.]}
df = pd.DataFrame(d, index=['a', 'b', 'c', 'd'])
从结构化数组创建
data = np.zeros((2,), dtype=[('A', 'i4'), ('B', 'f4'), ('C', 'a10')])
pd.DataFrame(data)
从列表字典创建
data2 = [{'a': 1, 'b': 2}, {'a': 5, 'b': 10, 'c': 20}]
pd.DataFrame(data2)
3.3 DataFrame列操作
列的选择与修改
df['one'] # 选择列
df['three'] = df['one'] * df['two'] # 添加新列
del df['two'] # 删除列
列插入
df.insert(1, 'bar', df['one']) # 在指定位置插入列
3.4 链式操作方法
pandas提供了类似dplyr的链式操作:
(iris.query('SepalLength > 5')
.assign(SepalRatio=lambda x: x.SepalWidth / x.SepalLength)
.plot(kind='scatter', x='SepalRatio', y='PetalRatio'))
4. 核心特性总结
- 数据对齐:pandas操作会自动按标签对齐
- 缺失数据处理:使用NaN表示缺失值
- 灵活索引:支持多种索引方式
- 类型多样性:支持多种数据类型共存
5. 最佳实践建议
- 理解数据对齐机制可以避免许多常见错误
- 链式操作可以使代码更清晰易读
- 合理使用assign方法可以避免中间变量
- 注意Python版本对字典顺序的影响
通过掌握这些核心概念,你将能够更高效地使用pandas进行数据处理和分析。
登录后查看全文
热门项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C026
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
26
9
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
423
3.25 K
Ascend Extension for PyTorch
Python
231
262
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
689
331
暂无简介
Dart
686
160
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
React Native鸿蒙化仓库
JavaScript
266
326
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.22 K
667
仓颉编译器源码及 cjdb 调试工具。
C++
136
869