CGraph并行任务执行优化:减少future.get带来的性能提升
2025-07-06 12:56:56作者:管翌锬
在CGraph项目的最新优化中,我们对并行任务执行机制进行了重要改进,通过减少future.get调用的方式,在Linux环境下实现了约10%的性能提升。这一优化展示了在高并发场景下,合理控制同步点对系统整体性能的关键影响。
优化背景
CGraph作为一个高效的图计算框架,其核心能力之一是对图中元素的并行处理。在原有实现中,框架使用future.get来等待所有并行任务完成,这种方式虽然直观,但在大规模并行场景下会引入不必要的同步开销。
技术实现细节
优化后的实现采用了原子计数器结合条件变量的方式替代了直接的future.get等待。具体实现如下:
- 引入原子计数器
totalSize来跟踪已完成任务数量 - 每个任务完成后通过原子操作递增计数器
- 当计数器达到预期总数时,通过条件变量通知主线程
- 主线程只需等待条件变量触发,无需逐个检查future状态
这种设计减少了线程间的同步点,使得工作线程可以更专注于任务执行,而不需要频繁与主线程交互。
性能对比数据
在Linux环境下的基准测试显示:
- 优化前平均耗时:约10820ms
- 优化后平均耗时:约9360ms
- 性能提升:约13.5%
值得注意的是,性能提升效果在不同平台上表现不一。在Linux上获得了显著提升,而在macOS上反而出现了性能下降。这种差异可能与不同操作系统对原子操作和条件变量的实现优化程度有关。
技术原理分析
这种优化之所以有效,主要基于以下几个技术原理:
- 减少同步开销:原子操作比future.get的同步机制更轻量
- 提高缓存局部性:工作线程可以更长时间保持在执行状态
- 降低上下文切换:减少了线程间频繁的同步等待
- 内存顺序优化:使用memory_order_release确保正确的内存可见性
实际应用建议
对于开发者而言,这种优化模式可以应用于以下场景:
- 大规模并行任务处理
- 需要等待多个异步操作完成的场景
- 对延迟敏感的高性能计算应用
但同时需要注意:
- 平台兼容性问题,不同操作系统可能表现不同
- 需要仔细处理异常情况,确保不会出现死锁
- 对于小规模并行任务,可能收益不明显
总结
CGraph的这次优化展示了在高性能计算框架中,合理设计并行同步机制的重要性。通过减少不必要的同步点,可以显著提升系统整体吞吐量。这也提醒我们,在并发编程中,有时候最简单的同步方式(如future.get)可能并非最优选择,需要根据具体场景设计更精细的同步策略。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C033
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
TJSONObject完整解析教程:Delphi开发者必备的JSON处理指南 谷歌浏览器跨域插件Allow-Control-Allow-Origin:前端开发调试必备神器 JDK 8u381 Windows x64 安装包:企业级Java开发环境的完美选择 Windows Server 2016 .NET Framework 3.5 SXS文件下载与安装完整指南 IK分词器elasticsearch-analysis-ik-7.17.16:中文文本分析的最佳解决方案 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 QT连接阿里云MySQL数据库完整指南:从环境配置到问题解决 基于Matlab的等几何分析IGA软件包:工程计算与几何建模的完美融合 咖啡豆识别数据集:AI目标检测在咖啡质量控制中的革命性应用 CrystalIndex资源文件管理系统:高效索引与文件管理的最佳实践指南
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
427
3.28 K
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
689
343
Ascend Extension for PyTorch
Python
235
267
暂无简介
Dart
686
161
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
React Native鸿蒙化仓库
JavaScript
266
327
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
56
33
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.22 K
669