Spring AI项目中的Spring Boot依赖管理策略解析
在Spring AI项目中,Spring Boot主要用于自动配置等功能,但项目核心AI模块并不直接依赖它。为了确保用户能够灵活地选择和使用不同版本的Spring Boot,Spring AI团队借鉴了Spring Cloud项目的依赖管理策略,实现了"自带Boot版本"的灵活机制。
背景与挑战
在传统Spring生态项目中,直接依赖Spring Boot版本会导致用户升级路径受限。每当新版本Boot发布时,项目必须同步发布新版本才能支持,这给用户升级带来了不便。Spring AI作为一个新兴项目,需要解决这一依赖管理难题。
解决方案架构
Spring AI采用了与Spring Cloud相同的双BOM(物料清单)策略:
-
构建时BOM:用于项目内部构建过程,包含Spring Boot依赖。由于项目构建过程中需要使用Boot提供的API,因此必须声明此依赖。
-
运行时BOM:面向最终用户发布到Maven中央仓库的物料清单,不包含Spring Boot依赖。这使得用户可以自由选择所需的Boot版本。
实现细节
这种架构的关键在于将构建依赖与运行时依赖分离。构建过程中使用的Spring Boot版本不会强制传递给最终用户,用户可以根据自己的需求选择兼容的Boot版本。
Spring团队内部达成了一项重要协议:任何被弃用的API都会在至少两个点版本发布周期后才移除。这为依赖管理提供了稳定性保障,使得像Spring AI这样的上层项目能够在不频繁更新的情况下保持兼容性。
技术优势
这种依赖管理策略带来了几个显著优势:
-
升级灵活性:用户可以根据自身需求独立升级Spring Boot版本,不受Spring AI发布周期的限制。
-
版本兼容性:通过明确的弃用策略,确保了API的向后兼容性。
-
生态一致性:采用与Spring Cloud相同的管理模式,降低了用户的学习成本。
-
维护便利性:项目团队无需为每个Boot版本发布新版本,减少了维护负担。
实践意义
对于使用Spring AI的开发者而言,这种设计意味着:
- 可以更自由地选择Spring Boot版本
- 升级路径更加灵活可控
- 减少了版本冲突的可能性
- 能够更快地采用新版本Boot的特性
这种依赖管理模式体现了Spring生态系统的成熟设计理念,既保证了项目的稳定性,又提供了足够的灵活性,是大型开源项目依赖管理的典范实践。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C092
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python058
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
AgentCPM-Explore没有万亿参数的算力堆砌,没有百万级数据的暴力灌入,清华大学自然语言处理实验室、中国人民大学、面壁智能与 OpenBMB 开源社区联合研发的 AgentCPM-Explore 智能体模型基于仅 4B 参数的模型,在深度探索类任务上取得同尺寸模型 SOTA、越级赶上甚至超越 8B 级 SOTA 模型、比肩部分 30B 级以上和闭源大模型的效果,真正让大模型的长程任务处理能力有望部署于端侧。Jinja00