Azure AI Projects SDK 中向量存储创建问题的分析与解决
问题背景
在使用 Azure AI Projects SDK 的 azure-ai-projects
包(版本 1.0.0b8)时,开发者在尝试通过 API 创建向量存储时遇到了问题。具体表现为当使用 Azure 资产 URI 作为数据源时,API 返回了 400 Bad Request
错误,提示"Vector store configuration is not supported"。
技术分析
问题现象
开发者尝试通过以下代码创建向量存储:
data_sources = [
VectorStoreDataSource(
asset_identifier=asset_uri,
asset_type=VectorStoreDataSourceAssetType.URI_ASSET,
)
for asset_uri in uploaded_file_uris
]
vector_store = await project_client.agents.create_vector_store_and_poll(
data_sources=data_sources,
name=f"vector_store_{agent_id}",
)
生成的请求体包含了一个 configuration
字段,其中包含了数据源信息:
{
"configuration": {
"data_sources": [
{
"uri": "azureml://...",
"type": "uri_asset"
}
]
},
"name": "vector_store_asst_rEP6VjvzJ9X93eB6FHyXouQq"
}
然而,API 规范显示该端点并不支持 configuration
字段,导致请求被拒绝。
根本原因
经过深入分析,发现这个问题与 Azure AI Foundry 的部署模式有关。Azure AI Foundry 支持两种部署模式:
- 基础模式(Basic)
- 标准模式(Standard)
只有在标准模式下,当 Azure AI Search 服务资源连接到 Azure AI Foundry 时,才能支持企业级文件搜索功能,包括向量存储的创建。
解决方案
要解决这个问题,开发者需要采取以下步骤:
-
部署标准模式的 Azure AI Foundry:确保使用标准模式部署,这样才能支持向量存储功能。
-
添加 AI Search 工具:如果已经部署了基础模式,可以通过特定命令将 AI Search 工具添加到现有的 Azure AI Foundry 中。
-
配置功能主机:使用 Azure CLI 为 hub 和项目创建功能主机,并建立必要的数据存储和 AI 搜索资源连接:
pip install -U azure-cli
az config set extension.dynamic_install_allow_preview=true
az ml capability-host create -g my-resource-group -w my-hub
az ml capability-host create -g my-resource-group -w my-project -s my-project/workspaceblobstore -v vector_store_connection_name -a ai_services_connection_used_by_a_project
经验总结
-
部署模式选择:在项目规划阶段就应根据需求选择合适的部署模式,如果需要高级搜索功能,务必选择标准模式。
-
API 版本兼容性:注意 SDK 和 API 版本之间的兼容性,确保使用的功能在当前 API 版本中受支持。
-
错误诊断:遇到 API 错误时,应仔细检查请求体是否符合 API 规范,并查阅相关文档了解功能支持情况。
通过采用标准模式部署 Azure AI Foundry,开发者成功解决了向量存储创建的问题,这为后续的 AI 应用开发奠定了良好的基础。
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~044CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0300- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选









