Azure AI Projects SDK 中向量存储创建问题的分析与解决
问题背景
在使用 Azure AI Projects SDK 的 azure-ai-projects 包(版本 1.0.0b8)时,开发者在尝试通过 API 创建向量存储时遇到了问题。具体表现为当使用 Azure 资产 URI 作为数据源时,API 返回了 400 Bad Request 错误,提示"Vector store configuration is not supported"。
技术分析
问题现象
开发者尝试通过以下代码创建向量存储:
data_sources = [
VectorStoreDataSource(
asset_identifier=asset_uri,
asset_type=VectorStoreDataSourceAssetType.URI_ASSET,
)
for asset_uri in uploaded_file_uris
]
vector_store = await project_client.agents.create_vector_store_and_poll(
data_sources=data_sources,
name=f"vector_store_{agent_id}",
)
生成的请求体包含了一个 configuration 字段,其中包含了数据源信息:
{
"configuration": {
"data_sources": [
{
"uri": "azureml://...",
"type": "uri_asset"
}
]
},
"name": "vector_store_asst_rEP6VjvzJ9X93eB6FHyXouQq"
}
然而,API 规范显示该端点并不支持 configuration 字段,导致请求被拒绝。
根本原因
经过深入分析,发现这个问题与 Azure AI Foundry 的部署模式有关。Azure AI Foundry 支持两种部署模式:
- 基础模式(Basic)
- 标准模式(Standard)
只有在标准模式下,当 Azure AI Search 服务资源连接到 Azure AI Foundry 时,才能支持企业级文件搜索功能,包括向量存储的创建。
解决方案
要解决这个问题,开发者需要采取以下步骤:
-
部署标准模式的 Azure AI Foundry:确保使用标准模式部署,这样才能支持向量存储功能。
-
添加 AI Search 工具:如果已经部署了基础模式,可以通过特定命令将 AI Search 工具添加到现有的 Azure AI Foundry 中。
-
配置功能主机:使用 Azure CLI 为 hub 和项目创建功能主机,并建立必要的数据存储和 AI 搜索资源连接:
pip install -U azure-cli
az config set extension.dynamic_install_allow_preview=true
az ml capability-host create -g my-resource-group -w my-hub
az ml capability-host create -g my-resource-group -w my-project -s my-project/workspaceblobstore -v vector_store_connection_name -a ai_services_connection_used_by_a_project
经验总结
-
部署模式选择:在项目规划阶段就应根据需求选择合适的部署模式,如果需要高级搜索功能,务必选择标准模式。
-
API 版本兼容性:注意 SDK 和 API 版本之间的兼容性,确保使用的功能在当前 API 版本中受支持。
-
错误诊断:遇到 API 错误时,应仔细检查请求体是否符合 API 规范,并查阅相关文档了解功能支持情况。
通过采用标准模式部署 Azure AI Foundry,开发者成功解决了向量存储创建的问题,这为后续的 AI 应用开发奠定了良好的基础。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C089
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python058
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
AgentCPM-Explore没有万亿参数的算力堆砌,没有百万级数据的暴力灌入,清华大学自然语言处理实验室、中国人民大学、面壁智能与 OpenBMB 开源社区联合研发的 AgentCPM-Explore 智能体模型基于仅 4B 参数的模型,在深度探索类任务上取得同尺寸模型 SOTA、越级赶上甚至超越 8B 级 SOTA 模型、比肩部分 30B 级以上和闭源大模型的效果,真正让大模型的长程任务处理能力有望部署于端侧。Jinja00