Azure AI Projects SDK 中向量存储创建问题的分析与解决
问题背景
在使用 Azure AI Projects SDK 的 azure-ai-projects 包(版本 1.0.0b8)时,开发者在尝试通过 API 创建向量存储时遇到了问题。具体表现为当使用 Azure 资产 URI 作为数据源时,API 返回了 400 Bad Request 错误,提示"Vector store configuration is not supported"。
技术分析
问题现象
开发者尝试通过以下代码创建向量存储:
data_sources = [
VectorStoreDataSource(
asset_identifier=asset_uri,
asset_type=VectorStoreDataSourceAssetType.URI_ASSET,
)
for asset_uri in uploaded_file_uris
]
vector_store = await project_client.agents.create_vector_store_and_poll(
data_sources=data_sources,
name=f"vector_store_{agent_id}",
)
生成的请求体包含了一个 configuration 字段,其中包含了数据源信息:
{
"configuration": {
"data_sources": [
{
"uri": "azureml://...",
"type": "uri_asset"
}
]
},
"name": "vector_store_asst_rEP6VjvzJ9X93eB6FHyXouQq"
}
然而,API 规范显示该端点并不支持 configuration 字段,导致请求被拒绝。
根本原因
经过深入分析,发现这个问题与 Azure AI Foundry 的部署模式有关。Azure AI Foundry 支持两种部署模式:
- 基础模式(Basic)
- 标准模式(Standard)
只有在标准模式下,当 Azure AI Search 服务资源连接到 Azure AI Foundry 时,才能支持企业级文件搜索功能,包括向量存储的创建。
解决方案
要解决这个问题,开发者需要采取以下步骤:
-
部署标准模式的 Azure AI Foundry:确保使用标准模式部署,这样才能支持向量存储功能。
-
添加 AI Search 工具:如果已经部署了基础模式,可以通过特定命令将 AI Search 工具添加到现有的 Azure AI Foundry 中。
-
配置功能主机:使用 Azure CLI 为 hub 和项目创建功能主机,并建立必要的数据存储和 AI 搜索资源连接:
pip install -U azure-cli
az config set extension.dynamic_install_allow_preview=true
az ml capability-host create -g my-resource-group -w my-hub
az ml capability-host create -g my-resource-group -w my-project -s my-project/workspaceblobstore -v vector_store_connection_name -a ai_services_connection_used_by_a_project
经验总结
-
部署模式选择:在项目规划阶段就应根据需求选择合适的部署模式,如果需要高级搜索功能,务必选择标准模式。
-
API 版本兼容性:注意 SDK 和 API 版本之间的兼容性,确保使用的功能在当前 API 版本中受支持。
-
错误诊断:遇到 API 错误时,应仔细检查请求体是否符合 API 规范,并查阅相关文档了解功能支持情况。
通过采用标准模式部署 Azure AI Foundry,开发者成功解决了向量存储创建的问题,这为后续的 AI 应用开发奠定了良好的基础。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00