PEFT项目新增Bone方法:一种超越PISSA的高效参数微调技术
Bone方法概述
Bone(BLOCK AFFINE)是一种全新的参数高效微调(PEFT)方法,由研究人员在最新论文中提出。与现有的LoRA系列方法不同,Bone采用了一种创新的网络结构设计,在多项基准测试中表现优异,甚至超越了当前先进的PISSA方法。
技术特点与优势
Bone方法的核心在于其独特的块仿射变换结构。与传统的LoRA方法相比,Bone在以下几个方面展现出明显优势:
-
性能表现:在数学推理等复杂任务上,Bone的准确率显著高于标准LoRA方法。测试数据显示,在相同参数设置下,Bone的性能提升可达数倍。
-
内存效率:虽然训练过程中需要启用checkpointing技术来优化内存使用,但与同样需要checkpointing的大模型LoRA训练相比,Bone在速度上并无明显劣势。
-
结构创新:Bone完全摒弃了LoRA系列的设计思路,采用了一种全新的参数化方式,为PEFT领域带来了新的研究方向。
实现与验证
研究人员已经完成了Bone方法的完整实现,并在多个标准数据集上进行了验证测试。实验设置严格保持一致性,确保与PISSA、LoRA等方法在相同条件下进行比较。
值得注意的是,在数学推理任务(math)上的测试中,标准LoRA方法表现异常低下,而Bone和PISSA则保持了稳定的高性能。这一现象可能与不同方法对复杂逻辑推理任务的适应性差异有关。
技术挑战与解决方案
Bone方法在实现过程中面临的主要挑战是训练时的高内存消耗。研究团队通过以下方式解决了这一问题:
-
checkpointing技术:在训练大型模型(如12B参数规模)时启用checkpointing,有效降低了内存峰值需求。
-
结构优化:对中间计算结果进行特殊处理,平衡了计算效率和内存占用。
未来展望
Bone方法的加入将进一步丰富PEFT工具库,为用户提供更多高效微调的选择。该方法特别适合以下场景:
- 需要处理复杂推理任务的应用
- 资源受限但追求高性能的微调需求
- 对新型PEFT方法有研究兴趣的学术工作
随着更多实践验证和优化,Bone有望成为继LoRA、PISSA之后又一个广泛应用的参数高效微调技术。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00