PEFT项目新增Bone方法:一种超越PISSA的高效参数微调技术
Bone方法概述
Bone(BLOCK AFFINE)是一种全新的参数高效微调(PEFT)方法,由研究人员在最新论文中提出。与现有的LoRA系列方法不同,Bone采用了一种创新的网络结构设计,在多项基准测试中表现优异,甚至超越了当前先进的PISSA方法。
技术特点与优势
Bone方法的核心在于其独特的块仿射变换结构。与传统的LoRA方法相比,Bone在以下几个方面展现出明显优势:
-
性能表现:在数学推理等复杂任务上,Bone的准确率显著高于标准LoRA方法。测试数据显示,在相同参数设置下,Bone的性能提升可达数倍。
-
内存效率:虽然训练过程中需要启用checkpointing技术来优化内存使用,但与同样需要checkpointing的大模型LoRA训练相比,Bone在速度上并无明显劣势。
-
结构创新:Bone完全摒弃了LoRA系列的设计思路,采用了一种全新的参数化方式,为PEFT领域带来了新的研究方向。
实现与验证
研究人员已经完成了Bone方法的完整实现,并在多个标准数据集上进行了验证测试。实验设置严格保持一致性,确保与PISSA、LoRA等方法在相同条件下进行比较。
值得注意的是,在数学推理任务(math)上的测试中,标准LoRA方法表现异常低下,而Bone和PISSA则保持了稳定的高性能。这一现象可能与不同方法对复杂逻辑推理任务的适应性差异有关。
技术挑战与解决方案
Bone方法在实现过程中面临的主要挑战是训练时的高内存消耗。研究团队通过以下方式解决了这一问题:
-
checkpointing技术:在训练大型模型(如12B参数规模)时启用checkpointing,有效降低了内存峰值需求。
-
结构优化:对中间计算结果进行特殊处理,平衡了计算效率和内存占用。
未来展望
Bone方法的加入将进一步丰富PEFT工具库,为用户提供更多高效微调的选择。该方法特别适合以下场景:
- 需要处理复杂推理任务的应用
- 资源受限但追求高性能的微调需求
- 对新型PEFT方法有研究兴趣的学术工作
随着更多实践验证和优化,Bone有望成为继LoRA、PISSA之后又一个广泛应用的参数高效微调技术。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00