PEFT项目新增Bone方法:一种超越PISSA的高效参数微调技术
Bone方法概述
Bone(BLOCK AFFINE)是一种全新的参数高效微调(PEFT)方法,由研究人员在最新论文中提出。与现有的LoRA系列方法不同,Bone采用了一种创新的网络结构设计,在多项基准测试中表现优异,甚至超越了当前先进的PISSA方法。
技术特点与优势
Bone方法的核心在于其独特的块仿射变换结构。与传统的LoRA方法相比,Bone在以下几个方面展现出明显优势:
-
性能表现:在数学推理等复杂任务上,Bone的准确率显著高于标准LoRA方法。测试数据显示,在相同参数设置下,Bone的性能提升可达数倍。
-
内存效率:虽然训练过程中需要启用checkpointing技术来优化内存使用,但与同样需要checkpointing的大模型LoRA训练相比,Bone在速度上并无明显劣势。
-
结构创新:Bone完全摒弃了LoRA系列的设计思路,采用了一种全新的参数化方式,为PEFT领域带来了新的研究方向。
实现与验证
研究人员已经完成了Bone方法的完整实现,并在多个标准数据集上进行了验证测试。实验设置严格保持一致性,确保与PISSA、LoRA等方法在相同条件下进行比较。
值得注意的是,在数学推理任务(math)上的测试中,标准LoRA方法表现异常低下,而Bone和PISSA则保持了稳定的高性能。这一现象可能与不同方法对复杂逻辑推理任务的适应性差异有关。
技术挑战与解决方案
Bone方法在实现过程中面临的主要挑战是训练时的高内存消耗。研究团队通过以下方式解决了这一问题:
-
checkpointing技术:在训练大型模型(如12B参数规模)时启用checkpointing,有效降低了内存峰值需求。
-
结构优化:对中间计算结果进行特殊处理,平衡了计算效率和内存占用。
未来展望
Bone方法的加入将进一步丰富PEFT工具库,为用户提供更多高效微调的选择。该方法特别适合以下场景:
- 需要处理复杂推理任务的应用
- 资源受限但追求高性能的微调需求
- 对新型PEFT方法有研究兴趣的学术工作
随着更多实践验证和优化,Bone有望成为继LoRA、PISSA之后又一个广泛应用的参数高效微调技术。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C050
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0126
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00