Apache Ignite Extensions 使用教程
2024-09-02 18:21:05作者:齐添朝
项目介绍
Apache Ignite Extensions 是一组集成 Apache Ignite 与各种 Java 框架的扩展。这些扩展允许开发者将 Ignite 与 Spring、Hibernate、Kafka 等框架无缝集成,从而扩展 Ignite 的功能和应用场景。每个扩展都是一个独立的 Maven 工件,并有自己的发布周期。
项目快速启动
环境准备
- Java 开发环境:确保你已经安装了 JDK 8 或更高版本。
- Maven:确保你已经安装了 Maven。
- Git:确保你已经安装了 Git。
克隆项目
git clone https://github.com/apache/ignite-extensions.git
cd ignite-extensions
构建项目
mvn clean install
示例代码
以下是一个简单的示例,展示如何使用 Ignite 与 Spring 集成。
import org.apache.ignite.Ignite;
import org.apache.ignite.Ignition;
import org.apache.ignite.configuration.IgniteConfiguration;
import org.apache.ignite.springdata.repository.config.EnableIgniteRepositories;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;
@Configuration
@EnableIgniteRepositories
public class IgniteConfig {
@Bean
public Ignite igniteInstance() {
IgniteConfiguration cfg = new IgniteConfiguration();
return Ignition.start(cfg);
}
}
应用案例和最佳实践
应用案例
- 分布式缓存:使用 Ignite 作为分布式缓存层,提高应用的读取性能。
- 实时数据处理:结合 Kafka 和 Ignite,实现实时数据流处理。
- 分布式计算:利用 Ignite 的计算网格功能,进行分布式计算任务。
最佳实践
- 配置优化:根据应用场景调整 Ignite 的配置参数,如内存设置、缓存策略等。
- 监控与维护:使用 Ignite 提供的监控工具,定期检查系统状态,及时处理异常。
- 扩展与集成:根据需求选择合适的扩展,并确保扩展与 Ignite 版本的兼容性。
典型生态项目
- Ignite Spring Data:提供与 Spring Data 的集成,简化数据访问层的开发。
- Ignite Hibernate:集成 Hibernate ORM,支持对象关系映射。
- Ignite Kafka Streams:结合 Kafka Streams,实现实时数据处理和分析。
- Ignite ML:提供机器学习功能,支持分布式模型训练和推理。
通过这些扩展,Apache Ignite 可以更好地融入现有的 Java 生态系统,提供更丰富的功能和更高的灵活性。
登录后查看全文
热门项目推荐
HunyuanImage-3.0
HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
Hunyuan3D-Part
腾讯混元3D-Part00GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0291ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++051Hunyuan3D-Omni
腾讯混元3D-Omni:3D版ControlNet突破多模态控制,实现高精度3D资产生成00Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起

deepin linux kernel
C
22
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
173
2.06 K

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
8
0

React Native鸿蒙化仓库
C++
201
279

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
956
565

为非计算机科班出身 (例如财经类高校金融学院) 同学量身定制,新手友好,让学生以亲身实践开源开发的方式,学会使用计算机自动化自己的科研/创新工作。案例以量化投资为主线,涉及 Bash、Python、SQL、BI、AI 等全技术栈,培养面向未来的数智化人才 (如数据工程师、数据分析师、数据科学家、数据决策者、量化投资人)。
Python
78
72

Git4Research旨在构建一个开放、包容、协作的研究社区,让更多人能够参与到开放研究中,共同推动知识的进步。
HTML
28
5

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.01 K
397

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
348
1.34 K

本仓将为广大高校开发者提供开源实践和创新开发平台,收集和展示openHiTLS示例代码及创新应用,欢迎大家投稿,让全世界看到您的精巧密码实现设计,也让更多人通过您的优秀成果,理解、喜爱上密码技术。
C
113
625