探索未来图像解析:Graphonomy——通用人类解析的图转移学习
2024-05-22 14:15:56作者:蔡怀权
在人工智能领域,尤其是计算机视觉中,图像解析是关键的技术之一。今天,我们有幸向您推荐一个创新的开源项目——Graphonomy,它基于图转移学习,实现了一种通用的人类解析方法。
项目介绍
Graphonomy是由中山大学的研究团队开发的一个深度学习框架,其核心目标在于通过图转移学习来解决跨数据集的人体解析问题。这个项目提供了代码和预训练模型,使得研究者和开发者可以快速实验并应用到自己的项目中。
项目技术分析
该项目采用PyTorch框架构建,利用先进的图神经网络(GNN)进行图像处理。Graphonomy不仅仅是一个模型,更是一种全新的学习策略——通过构建人体部位之间的关系图,学习不同数据集之间的共享结构,从而实现从源数据集到目标数据集的泛化能力。
项目及技术应用场景
Graphonomy技术适用于多种场景,包括但不限于:
- 智能零售: 利于理解顾客的行为,如购物时的物品选择。
- 体育赛事分析: 可以准确识别运动员的动作,帮助教练制定战术。
- 自动驾驶: 对行人行为的理解有助于安全驾驶决策。
- 医疗影像分析: 帮助医生自动标注病灶区域,辅助诊断。
项目特点
- 高效泛化:Graphonomy模型可以在未见过的数据集上表现良好,无需重新训练。
- 易用性:提供详细的数据准备指南和脚本,方便用户快速上手。
- 可扩展性:设计灵活,可以轻松适应新的数据集或任务。
- 社区支持:作者提供了联系方式,有疑问可以直接交流。
开始您的旅程
要开始探索Graphonomy的世界,首先确保满足项目依赖环境,下载必要的数据集,并按照提供的说明文件进行数据准备和模型部署。预训练模型可以从Google云端或者百度网盘下载,方便直接进行预测和评估。
如果你对计算机视觉,特别是人体解析技术感兴趣,那么Graphonomy绝对值得你投入时间和精力去研究。让我们一起迈向未来,用机器的眼睛揭示世界之美。
@inproceedings{Gong2019Graphonomy,
author = {Ke Gong and Yiming Gao and Xiaodan Liang and Xiaohui Shen and Meng Wang and Liang Lin},
title = {Graphonomy: Universal Human Parsing via Graph Transfer Learning},
booktitle = {CVPR},
year = {2019},
}
项目链接:https://github.com/Gaoyiminggithub/Graphonomy
登录后查看全文
热门项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C031
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
TJSONObject完整解析教程:Delphi开发者必备的JSON处理指南 谷歌浏览器跨域插件Allow-Control-Allow-Origin:前端开发调试必备神器 JDK 8u381 Windows x64 安装包:企业级Java开发环境的完美选择 Windows Server 2016 .NET Framework 3.5 SXS文件下载与安装完整指南 IK分词器elasticsearch-analysis-ik-7.17.16:中文文本分析的最佳解决方案 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 QT连接阿里云MySQL数据库完整指南:从环境配置到问题解决 基于Matlab的等几何分析IGA软件包:工程计算与几何建模的完美融合 咖啡豆识别数据集:AI目标检测在咖啡质量控制中的革命性应用 CrystalIndex资源文件管理系统:高效索引与文件管理的最佳实践指南
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
426
3.26 K
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
689
335
暂无简介
Dart
686
161
Ascend Extension for PyTorch
Python
231
265
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
React Native鸿蒙化仓库
JavaScript
266
326
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.22 K
667
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
25
30