MNE-Python中眼动追踪数据单位处理的现状与挑战
2025-06-27 06:40:32作者:蔡丛锟
眼动追踪技术在认知神经科学研究中扮演着重要角色,而MNE-Python作为一款强大的脑电/脑磁数据处理工具,近年来也逐步增加了对眼动数据的支持。然而,在实际应用中,用户可能会遇到关于眼动数据单位处理的一些不一致性问题,这些问题主要集中在瞳孔大小数据的单位处理上。
当前实现的核心问题
MNE-Python文档中存在两处看似矛盾的说法:一方面指出眼动和瞳孔数据以任意单位存储,另一方面又声称系统会尽可能将数据转换为SI单位(如位置数据用弧度,瞳孔大小用米)。这种不一致性在实际操作中表现为:
- 当用户尝试使用
raw.get_data(picks=["pupil"], unit="mm")获取数据时,系统会报错 - 尽管报错提示单位应为AU(任意单位),实际检查数据发现值确实是以米为单位存储的
- 手动将数据乘以1e3可以正确转换为毫米单位
技术背景与实现细节
MNE-Python处理眼动数据时,单位系统基于以下设计原则:
- 对于眼动仪数据,理想情况下应转换为SI单位存储
- 瞳孔大小建议使用米(m)作为标准单位
- 眼动位置数据建议使用弧度(rad)作为标准单位
然而,不同厂商的设备输出数据单位存在差异:
- Tobii设备通常以毫米(mm)为单位输出瞳孔数据
- Eyelink设备则以像素(px)和任意单位(AU)输出数据
set_channel_types_eyetrack函数设计用于处理这种差异,它能够:
- 将Tobii的毫米数据转换为米存储
- 设置正确的FIFF_UNIT_M单位标记
现存问题的技术分析
目前系统存在几个关键的技术限制:
-
绘图单位显示问题:尽管数据可能已转换为米,绘图时仍显示为AU,这是因为绘图系统硬编码了每种通道类型的默认缩放比例,尚未针对眼动数据的不同单位情况进行适配。
-
单位转换限制:
get_data方法内部调用_handle_defaults时,默认将瞳孔数据视为AU单位,即使实际存储单位为米,这导致无法直接获取毫米单位的数据。 -
文档与实际不符:文档声称系统会自动转换为SI单位,但实际上需要用户显式调用转换函数。
解决方案与未来方向
针对这些问题,开发团队提出了以下改进方向:
-
统一SI单位假设:修改系统默认假设,将眼动位置数据视为弧度,瞳孔数据视为米,这需要:
- 更新
mne.defaults._handle_default("si_units")中的默认设置 - 确保所有教程和示例在早期步骤就完成单位转换
- 更新
-
增强单位转换功能:
- 为Eyelink数据添加从AU到米的转换支持
- 完善单位转换的文档和示例
-
绘图系统改进:长期来看,需要重构绘图系统以支持:
- 基于实际存储单位的动态缩放
- 多种单位类型的灵活显示
对用户的建议
基于当前实现,研究人员在使用MNE-Python处理眼动数据时应注意:
- 明确了解自己设备输出的原始数据单位
- 尽早使用
set_channel_types_eyetrack进行单位设置和转换 - 对于绘图显示问题,可暂时使用
scalings="auto"参数 - 关注后续版本更新,特别是单位处理方面的改进
这些改进将使MNE-Python的眼动数据处理更加一致和可靠,为多模态脑科学研究提供更好的支持。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
电脑PC网易云音乐免安装皮肤插件使用指南:个性化音乐播放体验 开源电子设计自动化利器:KiCad EDA全方位使用指南 Jetson TX2开发板官方资源完全指南:从入门到精通 昆仑通态MCGS与台达VFD-M变频器通讯程序详解:工业自动化控制完美解决方案 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 QT连接阿里云MySQL数据库完整指南:从环境配置到问题解决 Python案例资源下载 - 从入门到精通的完整项目代码合集 2022美赛A题优秀论文深度解析:自行车功率分配建模的成功方法 TJSONObject完整解析教程:Delphi开发者必备的JSON处理指南
项目优选
收起
deepin linux kernel
C
24
9
Ascend Extension for PyTorch
Python
223
245
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
暂无简介
Dart
672
157
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
662
312
React Native鸿蒙化仓库
JavaScript
262
322
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
仓颉编译器源码及 cjdb 调试工具。
C++
134
867
仓颉编程语言测试用例。
Cangjie
37
860
openGauss kernel ~ openGauss is an open source relational database management system
C++
160
218