Argilla项目新增模型查询方法get_by与get_by_or_raise的技术解析
2025-06-13 19:09:58作者:虞亚竹Luna
在数据标注和机器学习模型管理领域,高效精准的数据检索能力是系统设计的核心需求。近期Argilla项目在其模型层实现了两个重要的查询方法增强——get_by和get_by_or_raise,这为开发者提供了更灵活、更安全的数据库查询方式。本文将从技术实现角度深入解析这两个方法的特性与应用场景。
方法设计背景
传统ORM查询中,开发者经常需要处理"存在性检查"和"异常处理"的模板代码。Argilla新增的这两个类方法通过封装常见查询模式,显著提升了代码的简洁性和可维护性。
方法功能详解
get_by方法
作为基础查询方法,get_by接收键值对参数进行条件过滤,返回匹配的第一个结果。当无匹配项时,该方法优雅地返回None而非抛出异常,适用于非关键路径的查询场景。
技术特点:
- 采用**kwargs接收动态查询条件
- 自动构建SQLAlchemy过滤条件
- 使用first()方法限制结果集
典型使用场景:
user = User.get_by(username="admin")
if user:
# 执行存在时的逻辑
get_by_or_raise方法
作为get_by的安全增强版本,该方法在查询无果时会主动抛出预定义的异常(默认HTTP 404)。这种设计遵循了"快速失败"原则,特别适合REST API中的资源查找场景。
技术亮点:
- 继承自get_by的基础查询逻辑
- 集成异常处理机制
- 支持自定义异常类型和错误信息
典型应用:
try:
dataset = Dataset.get_by_or_raise(name="demo", exception=HTTPException)
except HTTPException:
# 处理资源不存在的情况
实现原理剖析
在SQLAlchemy模型基础上,这两个方法通过类方法装饰器实现。核心是通过session.query()构建查询,其中:
- 条件构建阶段:将输入的kwargs转换为SQLAlchemy过滤条件表达式
- 查询执行阶段:使用first()获取单条结果
- 结果处理阶段:根据方法类型决定返回策略
异常处理采用Python的raise...from语法保持异常链完整,便于调试时追踪问题根源。
最佳实践建议
- 在服务层使用get_by_or_raise确保数据一致性
- 在批量处理场景使用get_by避免异常中断
- 对高频查询字段建议添加数据库索引
- 复杂查询仍建议使用原生SQLAlchemy查询构建器
性能考量
这两个方法在内部都使用了limit 1优化,确保数据库只需扫描至多一条记录。但开发者仍需注意:
- 避免在未索引字段上频繁查询
- 大数据表查询建议结合分页机制
- 可考虑添加query_cache装饰器提升重复查询性能
总结
Argilla这次的方法增强体现了实用主义的设计哲学,通过简单的API抽象解决了常见的查询模式需求。这种设计既保持了SQLAlchemy的灵活性,又通过合理的默认行为降低了开发者的认知负荷,是ORM层方法设计的优秀实践。对于需要快速构建可靠数据访问层的项目,这两个方法提供了即插即用的解决方案。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
最新内容推荐
Error Correction Coding——mathematical methods and algorithms:深入理解纠错编码的数学精髓 HP DL380 Gen9iLO固件资源下载:提升服务器管理效率的利器 RTD2270CLW/RTD2280DLW VGA转LVDS原理图下载介绍:项目核心功能与场景 JADE软件下载介绍:专业的XRD数据分析工具 常见材料性能参数pdf下载说明:一键获取材料性能参数,助力工程设计与分析 SVPWM的原理及法则推导和控制算法详解第四修改版:让电机控制更高效 Oracle Instant Client for Microsoft Windows x64 10.2.0.5下载资源:高效访问Oracle数据库的利器 鼎捷软件tiptop5.3技术手册:快速掌握4gl语言的利器 源享科技资料大合集介绍:科技学习者的全面资源库 潘通色标薄全系列资源下载说明:设计师的创意助手
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
523
3.72 K
Ascend Extension for PyTorch
Python
329
388
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
877
578
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
335
161
暂无简介
Dart
762
188
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.33 K
745
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
React Native鸿蒙化仓库
JavaScript
302
349
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
113
136