Wiredash SDK 使用指南
1. 项目介绍
Wiredash SDK 是一款为 Flutter 应用设计的交互式用户反馈工具。它允许开发者在应用内捕获用户反馈,包括屏幕截图和标签,安排和自动化推广者评分调查,并获得符合 GDPR 规范的实时分析。Wiredash SDK 由 Dart 语言编写,保证了与 Android、iOS、Web、macOS、Windows、Linux 和 IoT 设备的兼容性。它为最多 100,000 活跃设备提供免费服务。
2. 项目快速启动
创建账户和项目
首先,访问 Wiredash Console 并创建一个免费账户(可以使用 Google 或 GitHub 账户,或请求通过电子邮件注册的链接)。然后创建一个具有描述性名称的项目。
添加依赖
在 pubspec.yaml 文件中添加以下依赖:
dependencies:
flutter:
sdk: flutter
wiredash: ^2.4.0
集成 SDK
将你的应用的根组件包裹在 Wiredash 组件中,并确保使用在 Wiredash Console 的项目中获取的 projectId 和 SDK secret。
import 'package:flutter/material.dart';
import 'package:wiredash/wiredash.dart';
class MyApp extends StatelessWidget {
@override
Widget build(BuildContext context) {
return Wiredash(
projectId: 'YOUR-PROJECT-ID',
secret: 'YOUR-SECRET',
child: MaterialApp(
// 这里是你的 Flutter 应用的内容。
),
);
}
}
(可选) 使用更多功能
启动反馈流程
在任何位置调用 Wiredash.of(context).show() 方法来启动 Wiredash 反馈流程。
FloatingActionButton(
onPressed: () {
Wiredash.of(context).show(inheritMaterialTheme: true);
},
child: Icon(Icons.feedback_outlined),
)
启动推广者评分调查
FloatingActionButton(
onPressed: () {
Wiredash.of(context).showPromoterSurvey(force: true);
},
child: Icon(Icons.feedback_outlined),
)
更多详情请参考官方文档。
3. 应用案例和最佳实践
在这一部分,你可以展示如何在实际应用中使用 Wiredash SDK 来收集用户反馈,以及如何利用收集到的数据来改进应用。例如,你可以介绍如何根据用户反馈优化 UI/UX 设计,或者如何利用推广者评分调查来了解用户满意度。
4. 典型生态项目
在这一部分,你可以列出一些与 Wiredash SDK 相关的生态项目,例如用于特定类型反馈的插件,或者与其他服务集成的示例项目。这里可以提供一些示例代码或者项目结构,以帮助其他开发者快速启动他们自己的项目。
以上是 Wiredash SDK 的基本使用指南。开发者可以通过阅读官方文档或查看 GitHub 上的项目示例来获取更详细的指导和最佳实践。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00