OpenGVLab/Ask-Anything项目视频数据集规模分析
2025-06-25 17:19:40作者:乔或婵
OpenGVLab/Ask-Anything项目中的VideoChat2是一个重要的视频对话系统,其训练数据来源于多个公开视频数据集。本文将对VideoChat2所使用的各大数据集进行详细分析,帮助研究人员了解其数据规模及组成情况。
主要视频数据集规模
VideoChat2整合了多个高质量的视频数据集,这些数据集在规模和内容上各有特点:
-
Kinetics系列数据集是视频理解领域的重要基准:
- Kinetics 400包含约436GB数据
- Kinetics 600扩展至约727GB
- Kinetics 700进一步增加到约867GB
-
对话相关数据集:
- VideoChatGPT数据集约150GB
- M3IT多模态指令数据集约29.8GB
- VideoChat-Conversation专用视频数据约17.2GB
-
问答与理解类数据集:
- NExTQA视频问答数据集约23GB
- CLEVERER因果推理视频约11.5GB
- TextVR场景文本视频约5.4GB
- TGIF动图理解数据集约11.8MB
-
其他专业数据集:
- YouCook2烹饪视频(经VideoChat2处理)约60GB
- EgoQA第一人称视角视频(经处理)约3.68GB
- WebVid大规模网络视频(非官方版本)约20TB
数据特点分析
从数据规模可以看出,VideoChat2采用了分层的数据策略:
- 基础视频理解:依赖Kinetics系列大规模数据集提供通用视频表征能力
- 专业领域:通过YouCook2等数据集增强特定场景理解
- 对话能力:整合VideoChatGPT等对话专用数据
- 问答推理:包含NExTQA等多类型问答数据
这种多层次的数据架构使得VideoChat2既能处理通用视频理解任务,又能针对特定应用场景进行优化。值得注意的是,项目对部分原始数据进行了预处理和筛选,如EgoQA和YouCook2数据集都提供了经VideoChat2处理的版本,这有助于保证数据质量的一致性。
对于计划使用这些数据集的研究人员,建议根据具体应用场景选择合适的数据子集,平衡计算资源与模型性能需求。大规模数据如WebVid的20TB版本更适合机构级研究,而中小规模数据集则更适合快速实验和原型开发。
登录后查看全文
热门项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
522
3.71 K
Ascend Extension for PyTorch
Python
327
384
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
875
576
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
334
161
暂无简介
Dart
762
184
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.32 K
744
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
React Native鸿蒙化仓库
JavaScript
302
349
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
112
134