PEFT项目中的Conv1d层LoRA实现探索
2025-05-12 16:45:42作者:冯爽妲Honey
背景介绍
PEFT(Parameter-Efficient Fine-Tuning)是一种参数高效的微调方法,其中LoRA(Low-Rank Adaptation)是PEFT中最常用的技术之一。LoRA通过在预训练模型的权重矩阵旁添加低秩分解矩阵来实现高效微调,避免了直接修改原始大模型参数带来的高昂计算成本。
问题发现
在PEFT的当前实现中,我们发现其对torch.nn.Conv1d卷积层的支持存在不足。这一限制影响了某些特定架构模型的微调能力,特别是那些使用Conv1d作为基础构建块的模型,例如Enformer等生物序列处理模型。
技术分析
现有实现局限
PEFT目前主要支持两种卷积层类型:
- transformers.utils.Conv1D(实际上是线性层的变体)
- torch.nn.Conv2d标准二维卷积层
对于标准的torch.nn.Conv1d层,现有实现无法直接应用LoRA适配,原因在于:
- 形状不匹配:Conv1d的权重张量形状与线性层不同
- 卷积操作特性:需要考虑kernel size、padding等参数
解决方案探索
经过社区讨论和实验,我们确定了两种可能的实现路径:
-
直接扩展现有实现:
- 修改类型检查逻辑,将torch.nn.Conv1d纳入支持范围
- 复用Conv2d的实现思路,创建专门的Conv1d LoRA层
-
借鉴外部实现:
- 参考LoRA-Torch等第三方库的Conv1d实现
- 将其核心思想整合到PEFT框架中
实现细节
基于_ConvNd基类,我们可以构建Conv1d的特化实现:
class Conv1d(_ConvNd):
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
if not self._kernel_dim == 3:
raise ValueError(f"Conv1d层内核必须有3个维度,而不是{self._kernel_dim}")
self.conv_fn = F.conv1d
关键修改点包括:
- 调整类型检查逻辑,识别torch.nn.Conv1d层
- 正确处理输入/输出通道数(in_channels/out_channels)
- 确保卷积操作的前向传播正确实现
实际应用验证
在Enformer模型上的实验表明,该实现能够:
- 成功将LoRA适配器应用于Conv1d层
- 保持模型原有的推理能力
- 支持有效的参数高效微调
微调过程示例:
model = Enformer_lora.from_pretrained('pretrained-model')
lora.mark_only_lora_as_trainable(model) # 仅训练LoRA参数
optimizer = torch.optim.SGD(model.parameters(), lr=0.1)
# 训练循环
model.train()
out = model(input_seq)['human']
loss = torch.nn.functional.mse_loss(out, target)
loss.backward()
optimizer.step()
技术意义
这一扩展为PEFT带来了以下优势:
- 扩大了适用模型范围,特别是处理序列数据的模型
- 保持了PEFT原有的简洁接口和易用性
- 无需修改基础模型架构即可实现高效微调
- 为生物信息学等领域的序列模型提供了更好的支持
未来方向
虽然当前实现已解决基本问题,但仍有优化空间:
- 更全面的测试覆盖,确保不同kernel size和padding配置下的稳定性
- 性能优化,特别是长序列处理场景
- 与其他PEFT技术(如Adapter、Prefix Tuning)的协同使用
通过这次技术探索,PEFT框架的适用性得到了显著提升,为更广泛的模型架构提供了参数高效微调的可能性。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
项目优选
收起
deepin linux kernel
C
24
7
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
375
3.25 K
暂无简介
Dart
619
140
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
62
19
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
479
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
647
261
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.09 K
619
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
790
76