WhisperPlus 使用指南
一、项目目录结构及介绍
WhisperPlus 是一个基于开源项目 Whisper 进行增强的版本,旨在提供更快、更智能和功能更强大的语音识别体验。下面是其主要的目录结构概述:
.
├── requirements # 依赖库列表,包括常规和特定需求的安装文件
│ ├── requirements.txt # 主要的Python依赖项
│ └── speaker_diarization.txt # 用于说话人识别的额外依赖项
├── scripts # 脚本文件夹,可能包含一些辅助工具或预处理脚本
├── whisperplus # 核心代码库,包含对Whisper模型的增强实现
│ ├── __init__.py
│ └── ... # 其他Python模块和类定义
├── tests # 测试文件夹,存放单元测试或集成测试代码
├── setup.py # Python包的安装脚本
├── setup.cfg # 配置文件,用于控制setuptools行为
├── README.md # 项目说明文件,包含了安装指导、快速入门等信息
└── ... # 可能还包括其他如.gitignore、pre-commit-config.yaml等管理文件
每个子目录都承载了不同功能集,核心功能集中在 whisperplus 目录内,而 requirements 确保了项目运行所需的环境。
二、项目的启动文件介绍
WhisperPlus 并没有明确指出一个单一的“启动”文件,因为它作为一个库被设计成可导入到其他Python应用中。不过,使用WhisperPlus的基本流程通常从导入相关模块并调用其API开始。例如,进行语音转文本时,你可能会从 whisperplus 导入 SpeechToTextPipeline 类,并创建实例以开始处理音频数据。
示例代码片段:
from whisperplus import SpeechToTextPipeline
from transformers import BitsAndBytesConfig
# 设置配置
bnb_config = BitsAndBytesConfig(load_in_4bit=True)
pipeline = SpeechToTextPipeline(model_id="distil-whisper/distil-large-v3", quant_config=bnb_config)
# 假设你有一个audio_path变量指向音频文件路径
transcript = pipeline(audio_path=audio_path, language="english")
print(transcript)
三、项目的配置文件介绍
WhisperPlus 的配置主要是通过代码内部参数设定和外部依赖管理来完成的,而不是通过传统意义上的配置文件(如.cfg或.yaml)。项目依赖配置主要位于 requirements.txt 和 speaker_diarization.txt 文件中,这些列出的是你需要安装的所有第三方库。
对于特定运行时配置,例如量化设置、模型选择等,通常是直接在使用WhisperPlus的代码中进行指定,例如使用BitsAndBytesConfig实例化时的配置。此外,如果开发者希望对项目进行更加定制化的配置,这一般需要通过修改导入的模块参数或是在应用层增加配置逻辑来实现,而非依赖于项目提供的外部配置文件。
例如,为了优化内存使用和推理速度,用户可以在初始化模型时传入特定的配置对象,调整诸如是否使用Flash Attention、模型加载的位宽等选项。
请注意,实际项目操作中,高级用户可能通过环境变量或自定义的配置模块来间接配置这些细节,但这需根据具体应用场景自定义。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00