Pointcept项目中PTv3模型在nuScenes测试集上的性能复现分析
2025-07-04 07:37:08作者:卓炯娓
性能差异现象
在Pointcept项目中使用PTv3模型进行nuScenes数据集语义分割任务时,研究人员发现了一个值得关注的现象:在验证集(validation split)上能够复现甚至超越论文报告的性能指标,但在测试集(test split)上却出现了性能下降的情况。
具体数据表现为:
- 验证集mIoU:
- 论文报告:80.4
- 官方提供权重:80.3
- 自行训练(v1.5.1):81.1
- 自行训练(最新版):81.0
- 测试集mIoU:
- 论文报告:82.7
- 官方提供权重:81.2
- 自行训练(v1.5.1):80.8
- 自行训练(最新版):80.3
可能原因分析
经过与项目维护者的交流和技术验证,发现这种性能差异主要源于以下几个技术因素:
-
模型集成技术:论文中报告的测试集性能使用了多模型集成(multi-model ensemble)技术,即训练三个独立的PTv3模型,然后通过投票机制融合它们的预测结果。这是提升模型鲁棒性和性能的常见技术手段。
-
测试时数据增强(Test-Time Augmentation, TTA):在测试阶段可能应用了数据增强技术,如多尺度预测、旋转增强等,这些技术可以进一步提高模型在测试集上的表现。
-
数据集分布差异:虽然nuScenes的验证集和测试集都来自同一数据分布,但可能存在细微差异。集成模型通常对这种分布差异具有更好的适应能力。
技术实践建议
对于希望在nuScenes数据集上复现或改进PTv3模型性能的研究人员,建议采取以下技术方案:
-
实施模型集成:
- 使用相同配置训练多个PTv3模型
- 实现预测结果融合逻辑,可采用多数投票或概率平均等方法
- 注意保持训练过程的随机性差异,以获得多样化的模型
-
测试时增强技术:
- 考虑实现多尺度预测
- 尝试不同角度的旋转增强
- 注意增强策略应与训练时保持一致
-
性能验证流程:
- 验证集用于模型选择和超参数调优
- 测试集评估应采用与论文一致的集成策略
- 使用官方评估脚本确保指标计算一致性
结论
在计算机视觉特别是3D点云分割任务中,测试集性能通常需要通过集成和增强技术才能达到最优。Pointcept项目中PTv3模型在nuScenes数据集上的表现差异,正反映了学术研究中标准实践与基础实现之间的区别。研究人员在复现先进模型时,应当关注论文中可能隐含的技术细节,特别是那些在方法部分可能简略提及但在实验中实际使用的性能提升技巧。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
最新内容推荐
JDK 8u381 Windows x64 安装包:企业级Java开发环境的完美选择 全球36个生物多样性热点地区KML矢量图资源详解与应用指南 PANTONE潘通AI色板库:设计师必备的色彩管理利器 Launch4j中文版:Java应用程序打包成EXE的终极解决方案 CS1237半桥称重解决方案:高精度24位ADC称重模块完全指南 Windows Server 2016 .NET Framework 3.5 SXS文件下载与安装完整指南 Jetson TX2开发板官方资源完全指南:从入门到精通 Photoshop作业资源文件下载指南:全面提升设计学习效率的必备素材库 WebVideoDownloader:高效网页视频抓取工具全面使用指南 TJSONObject完整解析教程:Delphi开发者必备的JSON处理指南
项目优选
收起
deepin linux kernel
C
24
7
Ascend Extension for PyTorch
Python
192
212
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
649
270
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
297
111
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
384
3.69 K
仓颉编译器源码及 cjdb 调试工具。
C++
128
857
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
React Native鸿蒙化仓库
JavaScript
243
316
本项目是CANN提供的是一款高效、可靠的Transformer加速库,基于华为Ascend AI处理器,提供Transformer定制化场景的高性能融合算子。
C++
66
96
暂无简介
Dart
632
143