Pointcept项目中PTv3模型在nuScenes测试集上的性能复现分析
2025-07-04 15:14:24作者:卓炯娓
性能差异现象
在Pointcept项目中使用PTv3模型进行nuScenes数据集语义分割任务时,研究人员发现了一个值得关注的现象:在验证集(validation split)上能够复现甚至超越论文报告的性能指标,但在测试集(test split)上却出现了性能下降的情况。
具体数据表现为:
- 验证集mIoU:
- 论文报告:80.4
- 官方提供权重:80.3
- 自行训练(v1.5.1):81.1
- 自行训练(最新版):81.0
- 测试集mIoU:
- 论文报告:82.7
- 官方提供权重:81.2
- 自行训练(v1.5.1):80.8
- 自行训练(最新版):80.3
可能原因分析
经过与项目维护者的交流和技术验证,发现这种性能差异主要源于以下几个技术因素:
-
模型集成技术:论文中报告的测试集性能使用了多模型集成(multi-model ensemble)技术,即训练三个独立的PTv3模型,然后通过投票机制融合它们的预测结果。这是提升模型鲁棒性和性能的常见技术手段。
-
测试时数据增强(Test-Time Augmentation, TTA):在测试阶段可能应用了数据增强技术,如多尺度预测、旋转增强等,这些技术可以进一步提高模型在测试集上的表现。
-
数据集分布差异:虽然nuScenes的验证集和测试集都来自同一数据分布,但可能存在细微差异。集成模型通常对这种分布差异具有更好的适应能力。
技术实践建议
对于希望在nuScenes数据集上复现或改进PTv3模型性能的研究人员,建议采取以下技术方案:
-
实施模型集成:
- 使用相同配置训练多个PTv3模型
- 实现预测结果融合逻辑,可采用多数投票或概率平均等方法
- 注意保持训练过程的随机性差异,以获得多样化的模型
-
测试时增强技术:
- 考虑实现多尺度预测
- 尝试不同角度的旋转增强
- 注意增强策略应与训练时保持一致
-
性能验证流程:
- 验证集用于模型选择和超参数调优
- 测试集评估应采用与论文一致的集成策略
- 使用官方评估脚本确保指标计算一致性
结论
在计算机视觉特别是3D点云分割任务中,测试集性能通常需要通过集成和增强技术才能达到最优。Pointcept项目中PTv3模型在nuScenes数据集上的表现差异,正反映了学术研究中标准实践与基础实现之间的区别。研究人员在复现先进模型时,应当关注论文中可能隐含的技术细节,特别是那些在方法部分可能简略提及但在实验中实际使用的性能提升技巧。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C091
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python058
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
AgentCPM-Explore没有万亿参数的算力堆砌,没有百万级数据的暴力灌入,清华大学自然语言处理实验室、中国人民大学、面壁智能与 OpenBMB 开源社区联合研发的 AgentCPM-Explore 智能体模型基于仅 4B 参数的模型,在深度探索类任务上取得同尺寸模型 SOTA、越级赶上甚至超越 8B 级 SOTA 模型、比肩部分 30B 级以上和闭源大模型的效果,真正让大模型的长程任务处理能力有望部署于端侧。Jinja00
最新内容推荐
【免费下载】 DLL修复工具免费版 Photoshop作业资源文件下载指南:全面提升设计学习效率的必备素材库 TJSONObject完整解析教程:Delphi开发者必备的JSON处理指南 STM32到GD32项目移植完全指南:从兼容性到实战技巧 SteamVR 1.2.3 Unity插件:兼容Unity 2019及更低版本的VR开发终极解决方案 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 MQTT客户端软件源代码:物联网开发的强大工具与最佳实践指南 JDK 8u381 Windows x64 安装包:企业级Java开发环境的完美选择 中兴e读zedx.zed文档阅读器V4.11轻量版:专业通信设备文档阅读解决方案 PANTONE潘通AI色板库:设计师必备的色彩管理利器
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
473
3.52 K
React Native鸿蒙化仓库
JavaScript
286
338
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
224
91
Ascend Extension for PyTorch
Python
283
316
暂无简介
Dart
722
174
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
849
438
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.27 K
699
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19