MS-Swift项目中GRPO训练器的余弦奖励函数参数错误解析
2025-05-31 01:50:26作者:明树来
问题背景
在MS-Swift项目的GRPO(Gradient-based Reward Policy Optimization)训练过程中,用户报告了一个关于自定义奖励函数和余弦奖励函数参数错误的问题。这个问题主要出现在使用特定格式的数据集进行训练时,系统无法正确处理奖励计算所需的参数。
问题现象
当用户尝试使用GRPO训练器运行自定义奖励函数或内置的余弦奖励函数时,系统会抛出参数错误。从错误截图可以看出,系统在计算奖励时未能正确获取所需的solution字段,导致奖励计算失败。
根本原因分析
经过技术团队深入调查,发现问题主要源于以下几个方面:
-
数据集格式要求:GRPO训练器要求输入数据集必须包含solution字段,该字段需要与messages字段处于同一层级。如果数据集缺少这个字段,奖励计算将无法进行。
-
数据处理流程:在预处理阶段,系统没有正确为inputs赋予solution字段。此外,代码中的某些部分会意外删除response字段,进一步加剧了问题。
-
多GPU训练问题:当用户尝试在多GPU环境下训练时,由于vLLM后端默认设备分配问题,会导致张量设备不一致的错误(cuda:1和cuda:0不匹配)。
解决方案
针对上述问题,技术团队提供了以下解决方案:
-
数据集格式修正:
- 确保数据集包含solution字段
- 该字段应与messages字段同级
- 示例格式:
{ "messages": [...], "solution": "A" }
-
自定义奖励函数实现: 用户可以通过继承ORM基类来实现自定义奖励函数,示例代码如下:
class MyRewardFunction(ORM): def __call__(self, completions, solution, **kwargs) -> List[float]: rewards = [] for content, sol in zip(completions, solution): if sol == 'A': pass # 自定义逻辑 else: rewards.append(1.0) return rewards orms['external_rf'] = MyRewardFunction -
多GPU训练配置:
- 目前vLLM的xformers后端存在设备分配问题
- 建议暂时使用单GPU训练
- 等待vLLM官方修复此问题后再尝试多GPU训练
最佳实践建议
- 在使用GRPO训练器前,务必检查数据集格式是否符合要求
- 实现自定义奖励函数时,确保正确处理completions和solution参数
- 在多GPU环境下训练时,注意设备分配问题,可参考官方推荐的NPROC_PER_NODE设置
- 定期更新项目代码以获取最新的bug修复和功能改进
总结
MS-Swift项目中的GRPO训练器是一个强大的强化学习工具,但在使用过程中需要注意数据集格式和训练配置。通过理解这些问题背后的技术原理,用户可以更有效地利用这一工具进行模型训练。技术团队已经修复了主要的solution字段处理问题,并会持续关注多GPU训练的设备分配问题。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
539
3.76 K
Ascend Extension for PyTorch
Python
344
412
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
605
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
337
182
暂无简介
Dart
777
192
deepin linux kernel
C
27
11
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.34 K
757
React Native鸿蒙化仓库
JavaScript
303
356
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
987
252
仓颉编译器源码及 cjdb 调试工具。
C++
154
896