MS-Swift项目中GRPO训练器的余弦奖励函数参数错误解析
2025-05-31 12:23:43作者:明树来
问题背景
在MS-Swift项目的GRPO(Gradient-based Reward Policy Optimization)训练过程中,用户报告了一个关于自定义奖励函数和余弦奖励函数参数错误的问题。这个问题主要出现在使用特定格式的数据集进行训练时,系统无法正确处理奖励计算所需的参数。
问题现象
当用户尝试使用GRPO训练器运行自定义奖励函数或内置的余弦奖励函数时,系统会抛出参数错误。从错误截图可以看出,系统在计算奖励时未能正确获取所需的solution字段,导致奖励计算失败。
根本原因分析
经过技术团队深入调查,发现问题主要源于以下几个方面:
-
数据集格式要求:GRPO训练器要求输入数据集必须包含solution字段,该字段需要与messages字段处于同一层级。如果数据集缺少这个字段,奖励计算将无法进行。
-
数据处理流程:在预处理阶段,系统没有正确为inputs赋予solution字段。此外,代码中的某些部分会意外删除response字段,进一步加剧了问题。
-
多GPU训练问题:当用户尝试在多GPU环境下训练时,由于vLLM后端默认设备分配问题,会导致张量设备不一致的错误(cuda:1和cuda:0不匹配)。
解决方案
针对上述问题,技术团队提供了以下解决方案:
-
数据集格式修正:
- 确保数据集包含solution字段
- 该字段应与messages字段同级
- 示例格式:
{ "messages": [...], "solution": "A" }
-
自定义奖励函数实现: 用户可以通过继承ORM基类来实现自定义奖励函数,示例代码如下:
class MyRewardFunction(ORM): def __call__(self, completions, solution, **kwargs) -> List[float]: rewards = [] for content, sol in zip(completions, solution): if sol == 'A': pass # 自定义逻辑 else: rewards.append(1.0) return rewards orms['external_rf'] = MyRewardFunction
-
多GPU训练配置:
- 目前vLLM的xformers后端存在设备分配问题
- 建议暂时使用单GPU训练
- 等待vLLM官方修复此问题后再尝试多GPU训练
最佳实践建议
- 在使用GRPO训练器前,务必检查数据集格式是否符合要求
- 实现自定义奖励函数时,确保正确处理completions和solution参数
- 在多GPU环境下训练时,注意设备分配问题,可参考官方推荐的NPROC_PER_NODE设置
- 定期更新项目代码以获取最新的bug修复和功能改进
总结
MS-Swift项目中的GRPO训练器是一个强大的强化学习工具,但在使用过程中需要注意数据集格式和训练配置。通过理解这些问题背后的技术原理,用户可以更有效地利用这一工具进行模型训练。技术团队已经修复了主要的solution字段处理问题,并会持续关注多GPU训练的设备分配问题。
登录后查看全文
热门项目推荐
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~050CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0302- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选
收起

React Native鸿蒙化仓库
C++
177
262

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
864
512

🔥🔥🔥ShopXO企业级免费开源商城系统,可视化DIY拖拽装修、包含PC、H5、多端小程序(微信+支付宝+百度+头条&抖音+QQ+快手)、APP、多仓库、多商户、多门店、IM客服、进销存,遵循MIT开源协议发布、基于ThinkPHP8框架研发
JavaScript
93
15

openGauss kernel ~ openGauss is an open source relational database management system
C++
129
182

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
261
302

deepin linux kernel
C
22
5

🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
596
57

为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.07 K
0

本仓将收集和展示仓颉鸿蒙应用示例代码,欢迎大家投稿,在仓颉鸿蒙社区展现你的妙趣设计!
Cangjie
398
371

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
332
1.08 K