在Azure/mmlspark项目中使用text-embedding-3-small模型的多维度输出功能
概述
Azure/mmlspark项目中的OpenAIEmbedding组件近期新增了对text-embedding-3-small模型的支持,特别是实现了输出维度可配置的功能。这一特性允许开发者根据具体应用场景灵活调整嵌入向量的维度大小,从而在精度和性能之间取得平衡。
技术背景
text-embedding-3-small是OpenAI推出的新一代文本嵌入模型,相比前代产品具有更高的效率和灵活性。该模型最显著的特点就是支持自定义输出维度,开发者可以根据需求选择256、512等不同维度的嵌入向量输出。
实现原理
在mmlspark框架中,这一功能通过OpenAIEmbedding类实现。底层调用了OpenAI API的2024-03-01-preview版本,该版本API新增了对维度参数的支持。当设置dimensions参数后,API会返回相应维度的嵌入向量。
使用方法
在mmlspark中使用text-embedding-3-small模型并设置输出维度非常简单:
from synapse.ml.services.openai import OpenAIEmbedding
# 创建嵌入转换器
embedding = (
OpenAIEmbedding()
.setSubscriptionKey("your-api-key") # 设置API密钥
.setDeploymentName("text-embedding-3-small") # 指定模型
.setCustomServiceName("your-service-name") # 自定义服务名
.setApiVersion("2024-03-01-preview") # 使用支持维度设置的API版本
.setDimensions(256) # 设置输出维度为256
.setTextCol("text_column") # 指定输入文本列
.setErrorCol("error_column") # 错误信息列
.setOutputCol("embeddings") # 输出列名
)
# 应用转换
result = embedding.transform(input_dataframe)
参数说明
-
setDimensions(): 核心参数,用于设置输出嵌入向量的维度。常见值为256、512等,具体支持的值需参考OpenAI API文档。
-
setApiVersion(): 必须设置为"2024-03-01-preview"或更高版本,旧版本API不支持维度设置功能。
-
setDeploymentName(): 明确指定使用text-embedding-3-small模型。
应用场景
-
存储优化: 降低嵌入维度可以减少存储空间需求,适合大规模向量数据库应用。
-
计算加速: 低维向量可以加快相似性计算速度,提高检索效率。
-
特定任务优化: 某些下游任务可能不需要高维嵌入,适当降低维度反而能提高性能。
注意事项
-
维度降低可能会导致嵌入质量轻微下降,需要在具体应用中测试验证。
-
不同维度的嵌入向量不能直接比较相似度,同一应用应使用相同维度设置。
-
API版本必须匹配,旧版本不支持此功能。
总结
mmlspark对text-embedding-3-small模型的支持为开发者提供了更大的灵活性,使得文本嵌入技术能够更好地适应不同场景的需求。通过合理设置输出维度,开发者可以在模型效果和系统性能之间找到最佳平衡点。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
Baichuan-M3-235BBaichuan-M3 是百川智能推出的新一代医疗增强型大型语言模型,是继 Baichuan-M2 之后的又一重要里程碑。Python00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00