首页
/ Apache Arrow DataFusion 优化:禁用溢出文件重复验证提升性能

Apache Arrow DataFusion 优化:禁用溢出文件重复验证提升性能

2025-06-14 01:30:23作者:滑思眉Philip

在数据处理领域,内存溢出(spill)是一个常见的技术手段,当内存不足时将部分数据临时写入磁盘。Apache Arrow DataFusion作为高性能查询引擎,也实现了这一机制。本文将深入探讨DataFusion中溢出文件处理的优化点——禁用重复验证带来的性能提升。

背景与问题

DataFusion当前使用Arrow IPC格式将内存中的数据溢出到磁盘文件。在读取这些文件时,系统会重新验证数据的有效性,包括检查字符串是否为有效UTF-8编码等。这种验证虽然保证了数据安全,但带来了额外的性能开销。

随着Arrow Rust库的更新,现在可以通过配置选项禁用这种重复验证。基准测试显示,禁用验证后读取性能可提升3倍。考虑到溢出文件是由DataFusion自身生成的,我们可以信任其内容格式的正确性,因此这种优化是安全可行的。

技术实现

DataFusion的溢出功能实现位于物理计划模块的spill.rs文件中。当前实现通过Arrow IPC写入器将数据序列化到磁盘,读取时则使用IPC读取器并执行完整验证。

优化方案的核心是:

  1. 修改读取溢出文件的代码,禁用Arrow数据的重复验证
  2. 添加充分的代码注释说明安全性考虑
  3. 建立基准测试证明性能提升

性能影响

在实际的TPCH基准测试中(配置了内存限制以触发溢出),这一优化带来了显著的性能提升:

  • 查询1:提升7%性能
  • 查询4:提升14%性能
  • 查询5:提升11%性能
  • 查询6:提升9%性能
  • 查询15:提升10%性能
  • 查询21:提升8%性能

平均而言,受影响的查询获得了约8-10%的性能提升。未显示变化的查询可能是由于没有触发溢出操作或溢出数据量较小。

安全考虑

虽然禁用验证带来了性能优势,但需要明确其安全性前提:

  1. 溢出文件完全由DataFusion自身生成
  2. 文件在生成后未被外部程序修改
  3. 内存中的数据在溢出前已经过验证

在满足这些条件的情况下,禁用重复验证不会影响数据正确性,同时能获得显著的性能收益。

结论

这项优化展示了在特定场景下权衡安全性与性能的典型案例。通过合理利用Arrow库的新特性,DataFusion在保证数据正确性的前提下,显著提升了溢出操作的性能。这对于内存受限环境下运行大规模查询尤为重要,能够减少因内存不足导致的性能下降。

未来,随着Arrow生态的持续发展,DataFusion还可以探索更多类似的优化机会,进一步提升其在资源受限环境下的表现。

登录后查看全文
热门项目推荐

热门内容推荐

最新内容推荐

项目优选

收起
docsdocs
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
144
1.93 K
kernelkernel
deepin linux kernel
C
22
6
ohos_react_nativeohos_react_native
React Native鸿蒙化仓库
C++
192
274
openGauss-serveropenGauss-server
openGauss kernel ~ openGauss is an open source relational database management system
C++
145
189
RuoYi-Vue3RuoYi-Vue3
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
930
553
nop-entropynop-entropy
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
8
0
openHiTLSopenHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
423
392
金融AI编程实战金融AI编程实战
为非计算机科班出身 (例如财经类高校金融学院) 同学量身定制,新手友好,让学生以亲身实践开源开发的方式,学会使用计算机自动化自己的科研/创新工作。案例以量化投资为主线,涉及 Bash、Python、SQL、BI、AI 等全技术栈,培养面向未来的数智化人才 (如数据工程师、数据分析师、数据科学家、数据决策者、量化投资人)。
Jupyter Notebook
75
66
CangjieCommunityCangjieCommunity
为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.11 K
0
openHiTLS-examplesopenHiTLS-examples
本仓将为广大高校开发者提供开源实践和创新开发平台,收集和展示openHiTLS示例代码及创新应用,欢迎大家投稿,让全世界看到您的精巧密码实现设计,也让更多人通过您的优秀成果,理解、喜爱上密码技术。
C
64
511