XTDB 2.0.0-beta7发布:时序数据处理能力重大升级
关于XTDB
XTDB是一个开源的时序数据库,专注于处理带有时间维度的数据。它采用独特的架构设计,能够高效地存储和查询随时间变化的数据实体。XTDB的核心优势在于其强大的时间旅行查询能力,允许用户查询数据在任意时间点的状态。
重大架构改进:优化频繁变更实体处理
在2.0.0-beta7版本中,XTDB团队对底层索引结构进行了重大改进,显著提升了处理频繁变更实体(如时间序列数据)的能力。这一改进主要针对两类典型场景:
- 传感器读数:每个传感器对应一个ID,每次读数作为该实体的一个版本,具有较短的有效时间窗口
- 交易价格更新:每个交易品种对应一个ID,每次更新从当前时间开始有效,直到被下一次更新覆盖
技术实现细节
XTDB节点协作维护一个基于共享对象存储的日志结构合并树(LSM树)。在之前的版本中,树的深层通过实体主键(PK)进行分片。这种设计对于每个实体只有少量版本的情况表现良好,但当单个实体拥有成百上千甚至数百万个版本时,性能就会受到影响。
beta7版本在LSM树的第一层采用了基于实体版本"新近度"的分区策略,这一设计灵感来源于分代垃圾回收机制。新数据很可能很快被取代,而保持较长时间的旧数据很可能在未来继续保持不变。因此,新数据会被快速收集处理,而旧数据则不需要频繁处理。
这种改进使LSM树实际上分为两部分:
- 历史部分:主要按版本新近度分片,这部分相对较浅但较宽,包含大量时间桶,在其时间窗口过期后很少被写入
- 当前部分:按PK分片,这部分倾向于深度增长而非宽度扩展
迁移指南
由于存储格式变更,升级到beta7需要进行数据迁移。用户需要先将节点升级到beta6.6版本以确保向前兼容性。
迁移提供两种方案:
-
全量重建索引:如果有无限保留期的日志,可以直接启动beta7节点,它们会从头开始重建索引。这种方法最简单,适合数据集较小的情况。
-
使用迁移工具:对于大型数据集或有限保留期日志,需要使用专门的迁移工具。这个工具可以作为一次性任务运行,不影响正在运行的beta6节点。
迁移完成后,可以按常规方式部署beta7节点并逐步淘汰beta6节点。如需回滚,只需关闭beta7节点,重新启动beta6.6节点,并删除对象存储中的v06目录即可。
新增功能:任意精度十进制数支持
beta7版本新增了对任意精度十进制数(BigDecimal)的初步支持。用户现在可以在预处理语句中直接插入BigDecimal/BigInteger值。这一功能是根据设计合作伙伴的需求优先开发的,体现了XTDB团队对用户反馈的重视。
功能精简
为简化API接口,beta7版本移除了几个使用率低的实验性功能:
-
XTQL DML操作符:包括
:insert-into、:delete、:erase、:assert-exists和:assert-not-exists等操作符由于使用率低被移除。而:put-docs、:delete-docs和:erase-docs等核心功能以及查询端XTQL将继续保留。 -
事务函数支持:用户反馈表明,现在更倾向于使用标准SQL DML(如UPDATE、ASSERT)来完成相关操作。
-
Java旧版本支持:不再支持Java 21以下版本。仍在使用旧版Java的用户可以通过Postgres兼容的JDBC驱动连接XTDB Docker镜像或开发容器。
总结
XTDB 2.0.0-beta7通过优化底层索引结构,显著提升了处理频繁变更实体的能力,使系统能够更好地应对时间序列类数据场景。同时,团队根据用户反馈精简了部分功能,使产品更加聚焦核心价值。这些改进标志着XTDB在成为专业时序数据库解决方案的道路上又迈出了坚实的一步。
随着2.x系列版本的不断完善,XTDB正逐步展现出其在处理复杂时序数据方面的独特优势,为物联网、金融科技等领域的实时数据分析提供了强有力的技术支持。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C0113
let_datasetLET数据集 基于全尺寸人形机器人 Kuavo 4 Pro 采集,涵盖多场景、多类型操作的真实世界多任务数据。面向机器人操作、移动与交互任务,支持真实环境下的可扩展机器人学习00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python059
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00