Pact-JS中JSON API内容类型请求的注意事项
在Pact-JS测试框架中,当使用JSON API规范的内容类型(application/vnd.api+json)时,开发者可能会遇到请求体在消费者测试和提供者测试之间不一致的问题。本文将深入分析这一现象的原因,并提供解决方案。
问题现象
在消费者测试中,开发者可能会这样定义请求:
.withRequest('POST', '/api/test', (builder) => {
builder.headers({
'Content-Type': 'application/vnd.api+json',
});
builder.jsonBody({ data: { attributes: { name: 'name' } } });
})
期望在提供者测试中接收到的请求体是:
{ "data": { "attributes": { "name": "name" } } }
但实际上,提供者接收到的请求体却变成了:
{"body":{"type":"Buffer","data":[123,34,100,97,116,97,34,58,123,34,97,116,116,114,105,98,117,116,101,115,34,58,123,34,110,97,109,101,34,58,34,110,97,109,101,34,125,125,125]}
根本原因
这个问题实际上源于Express.js框架对内容类型的默认处理方式。Express的body-parser中间件默认不会自动处理application/vnd.api+json类型的内容,而是将其视为二进制数据。
解决方案
要解决这个问题,需要在Express服务器中显式配置body-parser来处理JSON API的内容类型:
server.use(express.json({
type: [
'application/vnd.api+json', // 明确添加JSON API内容类型
],
}));
技术背景
JSON API规范(application/vnd.api+json)是一种特定的JSON内容类型,用于构建RESTful API。虽然它基于JSON,但由于其特殊的媒体类型标识,许多框架不会自动将其视为标准JSON来处理。
Express.js的body-parser中间件默认只处理以下内容类型:
- application/json
- application/x-www-form-urlencoded
对于其他JSON变体,如application/vnd.api+json,需要显式声明才能正确解析。
最佳实践
-
明确声明内容类型:在使用非标准JSON内容类型时,始终在服务器端明确声明支持的类型。
-
测试验证:在契约测试中,验证请求和响应的内容类型是否一致。
-
文档记录:在API文档中明确说明支持的内容类型,避免消费者混淆。
-
考虑兼容性:如果可能,同时支持标准application/json和专用内容类型,提高API的兼容性。
总结
Pact-JS本身能够正确处理JSON API内容类型的请求,但最终请求体的处理取决于服务端框架的配置。通过正确配置Express的body-parser中间件,可以确保JSON API规范的请求体在契约测试的双方保持一致。这提醒我们在进行契约测试时,不仅要关注测试框架的配置,还要注意服务端框架对请求处理的细节。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00