OpenCompass项目中的MTBench数据集缺失问题解析
在OpenCompass项目的最新版本中,部分用户反馈在进行主观评估任务时遇到了MTBench数据集缺失的问题。本文将从技术角度分析该问题的背景、原因以及解决方案。
问题背景
OpenCompass是一个用于评估大型语言模型性能的开源框架。在0.2.2.rc1版本中,项目引入了MTBench数据集用于主观评估任务。该数据集主要用于测试模型在多轮对话中的表现,是评估模型交互能力的重要基准。
问题现象
用户在使用configs/eval_subjective_mtbench.py配置文件时发现,虽然配置中指定了data/subjective/mtbench作为数据路径,但在下载的完整数据集包OpenCompassData-complete-20240207.zip中并未包含相应的数据集文件。
技术分析
-
数据集重组:项目团队近期对数据路径进行了重组,导致新版本的数据集包中暂时缺少MTBench相关文件。
-
数据集结构:MTBench数据集包含多个文件:
- mtbench.json:完整的JSON格式数据
- 其他分片文件:根据不同温度设置划分的子数据集
-
评估意义:MTBench数据集对于评估模型在多轮对话中的连贯性、一致性和适应性至关重要,特别是在不同温度参数下的表现差异。
解决方案
-
临时解决方案:用户可以从项目团队提供的单独压缩包中获取MTBench数据集,将其放置在指定路径下。
-
长期方案:等待项目团队在后续版本中发布包含完整数据集的新版本数据包。
最佳实践建议
-
在进行主观评估前,建议检查所有依赖的数据集是否完整就位。
-
对于重要的评估任务,建议使用项目团队确认过的稳定版本数据集。
-
关注项目更新日志,及时获取数据集变更信息。
总结
数据集管理是机器学习项目中的重要环节。OpenCompass项目团队正在积极优化数据组织结构,用户在使用过程中遇到类似问题时,可以通过社区渠道及时反馈。随着项目的持续发展,数据集管理将会更加规范和完善。
对于需要进行MTBench评估的研究人员,建议暂时使用团队提供的单独数据集文件,并关注后续版本更新以获取更完整的数据支持。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C043
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0121
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00