Apache StreamPipes 项目下载与安装教程
1. 项目介绍
Apache StreamPipes 是一个面向工业物联网(Industrial IoT)的开源自服务工具箱。它旨在让非技术用户能够轻松地连接、分析和探索物联网数据流。StreamPipes 提供了一个丰富的图形用户界面,以及超过100种算法和数据下沉,可以快速创建数据调和和数据分析管道,支持超过20种工业协议,如 OPC-UA、PLC、MQTT、REST、Pulsar 和 Kafka 等。
2. 项目下载位置
您可以在 GitHub 上找到 Apache StreamPipes 项目,地址是:Apache StreamPipes GitHub 仓库。但根据要求,这里不提供链接,您可以通过搜索项目名称在 GitHub 上找到它。
3. 项目安装环境配置
在安装 Apache StreamPipes 前,需要确保您的系统已安装以下环境:
- Java 17 JDK
- Maven(版本至少为 3.8)
- NodeJS + NPM(NodeJS 版本至少为 v12+,NPM 版本至少为 v6+)
- Docker 和 Docker-Compose
以下是环境配置的图片示例:
Java 环境配置示例图
Maven 环境配置示例图
NodeJS 和 NPM 环境配置示例图
Docker 环境配置示例图
Docker-Compose 环境配置示例图
(注:以上 image_path/example-env.png
为示例图片路径,实际使用时应替换为正确的图片路径。)
4. 项目安装方式
最简单的方式是使用 Docker-based 安装和操作选项。以下是两种主要的安装方式:
- StreamPipes Compose:适合普通用户使用。
- StreamPipes CLI 和 StreamPipes k8s:适合开发者和运维人员。
以下为使用 Docker Compose 的安装步骤:
- 下载最新版本的 StreamPipes。
- 切换到安装程序/组合目录。
- 运行
docker-compose up -d
命令。
5. 项目处理脚本
具体的处理脚本依赖于您的具体使用场景。一般情况下,StreamPipes 提供了相应的命令行界面(CLI)和用户界面(UI)来创建和管理数据流和管道。以下是一个简单的命令行示例,演示如何启动 StreamPipes:
# 启动 StreamPipes
docker-compose up -d
通过以上步骤,您应该能够成功下载并安装 Apache StreamPipes 项目。接下来,您可以开始使用它来连接您的物联网设备,并创建数据分析管道。
- QQwen3-Next-80B-A3B-InstructQwen3-Next-80B-A3B-Instruct 是一款支持超长上下文(最高 256K tokens)、具备高效推理与卓越性能的指令微调大模型00
- QQwen3-Next-80B-A3B-ThinkingQwen3-Next-80B-A3B-Thinking 在复杂推理和强化学习任务中超越 30B–32B 同类模型,并在多项基准测试中优于 Gemini-2.5-Flash-Thinking00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0266cinatra
c++20实现的跨平台、header only、跨平台的高性能http库。C++00AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02- HHunyuan-MT-7B腾讯混元翻译模型主要支持33种语言间的互译,包括中国五种少数民族语言。00
GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile06
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
热门内容推荐
最新内容推荐
项目优选









