AutoGen项目v0.4.9版本发布:新增Anthropic模型支持与任务中心记忆系统
AutoGen是一个由微软开发的开源框架,旨在简化和加速多智能体系统的开发。它提供了构建、管理和协调多个AI智能体协同工作的工具,使开发者能够轻松创建复杂的多智能体应用。在最新发布的v0.4.9版本中,AutoGen带来了多项重要更新,包括对Anthropic模型的原生支持、LlamaCpp模型客户端、实验性的任务中心记忆系统等。
新增Anthropic模型原生支持
AutoGen v0.4.9版本最引人注目的特性之一是对Anthropic模型的原生支持。Anthropic是一家专注于构建安全、可靠AI系统的公司,其Claude系列模型在自然语言处理领域表现出色。
开发者现在可以通过简单的pip命令安装Anthropic支持:
pip install -U "autogen-ext[anthropic]"
新提供的AnthropicChatCompletionClient遵循与OpenAIChatCompletionClient相同的接口设计,这意味着开发者可以无缝地将Anthropic模型集成到现有的智能体和团队中。使用方式也非常直观:
from autogen_ext.models.anthropic import AnthropicChatCompletionClient
from autogen_core.models import UserMessage
async def main():
anthropic_client = AnthropicChatCompletionClient(
model="claude-3-sonnet-20240229",
api_key="your-api-key" # 可选,也可通过环境变量设置
)
result = await anthropic_client.create([UserMessage(content="法国首都是哪里?", source="user")])
print(result)
这种设计体现了AutoGen框架的模块化思想,使得模型提供商的切换变得异常简单,为开发者提供了更大的灵活性。
LlamaCpp模型客户端集成
对于希望在本地运行模型的开发者,v0.4.9版本新增了对LlamaCpp项目的原生支持。LlamaCpp是一个优秀的本地模型运行方案,现在可以通过AutoGen直接使用:
pip install -U "autogen-ext[llama-cpp]"
使用本地模型文件的方式如下:
from autogen_ext.models.llama_cpp import LlamaCppChatCompletionClient
async def main():
llama_client = LlamaCppChatCompletionClient(model_path="/path/to/your/model.gguf")
result = await llama_client.create([UserMessage(content="法国首都是哪里?", source="user")])
print(result)
此外,还可以直接从Hugging Face加载模型:
llama_client = LlamaCppChatCompletionClient(
repo_id="unsloth/phi-4-GGUF",
filename="phi-4-Q2_K_L.gguf",
n_gpu_layers=-1,
seed=1337,
n_ctx=5000
)
这一特性为需要数据隐私或离线场景的应用提供了有力支持。
实验性任务中心记忆系统
v0.4.9版本引入了一个实验性的任务中心记忆(Task-Centric Memory)模块,为智能体赋予了更强大的记忆和学习能力。这一系统具有以下特点:
- 快速学习能力:突破上下文窗口限制,实现持续学习
- 可教导性:能够记住用户提供的指导、修正、计划和演示
- 自我改进:通过自身经验学习并快速适应变化的环境
- 错误避免:在遇到类似任务时避免重复犯错
开发者可以通过Teachability类将这一功能集成到AssistantAgent中:
from autogen_ext.experimental.task_centric_memory import MemoryController
from autogen_ext.experimental.task_centric_memory.utils import Teachability
async def main():
memory_controller = MemoryController(reset=False, client=client)
teachability = Teachability(memory_controller=memory_controller)
assistant_agent = AssistantAgent(
name="teachable_agent",
system_message="你是一个有帮助的AI助手,能够记住之前对话中用户的教导。",
model_client=client,
memory=[teachability],
)
这一功能的引入使得AutoGen智能体更加接近人类的持续学习能力,为构建更智能、更自适应的多智能体系统奠定了基础。
其他重要改进
除了上述主要特性外,v0.4.9版本还包含多项改进:
- Gitty实验性应用:一个帮助开源项目维护者减轻负担的工具,目前支持自动回复issue
- 增强的追踪和日志功能:包括LLMStreamStartEvent、LLMStreamEndEvent和ToolCallEvent等新事件类型
- PowerShell支持:LocalCommandLineCodeExecutor现在支持PowerShell
- 文档网站无障碍改进:大幅提升了文档网站的可访问性
总结
AutoGen v0.4.9版本通过引入对Anthropic和LlamaCpp模型的支持,进一步扩展了其模型兼容性,为开发者提供了更多选择。实验性的任务中心记忆系统则为智能体赋予了更强大的学习和适应能力。这些改进共同推动AutoGen向着更灵活、更智能的多智能体框架方向发展,为构建复杂的AI协作系统提供了更强大的工具支持。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
unified-cache-managementUnified Cache Manager(推理记忆数据管理器),是一款以KV Cache为中心的推理加速套件,其融合了多类型缓存加速算法工具,分级管理并持久化推理过程中产生的KV Cache记忆数据,扩大推理上下文窗口,以实现高吞吐、低时延的推理体验,降低每Token推理成本。Python03
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
Spark-Prover-X1-7BSpark-Prover-X1-7B is a 7B-parameter large language model developed by iFLYTEK for automated theorem proving in Lean4. It generates complete formal proofs for mathematical theorems using a three-stage training framework combining pre-training, supervised fine-tuning, and reinforcement learning. The model achieves strong formal reasoning performance and state-of-the-art results across multiple theorem-proving benchmarksPython00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer-X1-7B is a 7B-parameter large language model by iFLYTEK for mathematical auto-formalization. It translates natural-language math problems into precise Lean4 formal statements, achieving high accuracy and logical consistency. The model is trained with a two-stage strategy combining large-scale pre-training and supervised fine-tuning for robust formal reasoning.Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile015
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00