深入理解async-book中的Future执行器实现
2025-06-20 08:13:40作者:齐冠琰
前言
在异步编程中,Future是Rust异步生态的核心抽象。然而,Future本身是惰性的,需要被主动驱动才能执行。本文将深入探讨如何构建一个高效的Future执行器(Executor),这是理解Rust异步运行时机制的关键。
Future执行器基础概念
为什么需要执行器
Rust的Future具有惰性求值特性,这意味着:
- 创建Future并不会立即执行
- Future需要被主动轮询(poll)才能推进状态
- 顶层Future需要执行器来驱动
执行器核心职责
一个基本的执行器需要完成以下工作:
- 管理一组待执行的Future任务
- 在适当时候调用poll方法推进Future执行
- 处理wake通知,调度就绪的任务
构建简易执行器
项目结构与依赖
首先需要添加futures crate依赖,它提供了构建Waker所需的工具:
[dependencies]
futures = "0.3"
核心数据结构
执行器主要由两部分组成:
- Executor:负责从任务通道接收并执行任务
- Spawner:提供生成新任务的接口
struct Executor {
ready_queue: Receiver<Arc<Task>>,
}
struct Spawner {
task_sender: SyncSender<Arc<Task>>,
}
struct Task {
future: Mutex<Option<BoxFuture<'static, ()>>>,
task_sender: SyncSender<Arc<Task>>,
}
任务调度原理
- 每个Task包含一个待执行的Future和一个发送器
- 当Future需要被唤醒时,通过发送器将自己重新加入队列
- 执行器不断从队列取出任务并执行
Waker的实现关键
Waker是连接Future和Executor的桥梁:
impl ArcWake for Task {
fn wake_by_ref(arc_self: &Arc<Self>) {
arc_self.task_sender.send(arc_self.clone()).expect("任务队列已满");
}
}
当Future内部调用wake()时,会触发将任务重新加入队列的操作。
执行器工作流程
任务生成
通过Spawner创建新任务:
fn spawn(&self, future: impl Future<Output = ()> + 'static + Send) {
let future = future.boxed();
let task = Arc::new(Task {
future: Mutex::new(Some(future)),
task_sender: self.task_sender.clone(),
});
self.task_sender.send(task).expect("任务队列已满");
}
执行主循环
Executor的核心运行逻辑:
fn run(&self) {
while let Ok(task) = self.ready_queue.recv() {
let mut future_slot = task.future.lock().unwrap();
if let Some(mut future) = future_slot.take() {
let waker = waker_ref(&task);
let context = &mut Context::from_waker(&waker);
if future.as_mut().poll(context).is_pending() {
*future_slot = Some(future);
}
}
}
}
实际应用示例
我们可以使用这个执行器来运行自定义Future:
fn main() {
let (executor, spawner) = new_executor();
// 生成一个定时器Future
spawner.spawn(async {
println!("开始定时器!");
TimerFuture::new(Duration::new(2, 0)).await;
println!("定时器结束!");
});
// 生成一个简单任务
spawner.spawn(async {
println!("你好来自Future!");
task::yield_now().await;
println!("任务完成!");
});
executor.run();
}
执行器设计要点
- 任务调度:使用通道实现简单的任务队列
- 唤醒机制:通过ArcWake实现高效的任务唤醒
- 线程安全:确保Send和Sync约束满足多线程要求
- 资源管理:合理使用Arc进行引用计数
进阶思考
这个基础执行器可以进一步扩展:
- 添加多线程支持
- 实现工作窃取调度
- 增加任务优先级
- 集成IO事件驱动
总结
通过实现一个简易的Future执行器,我们深入理解了Rust异步运行时的核心机制。执行器负责调度和驱动Future执行,而Waker机制则实现了高效的唤醒通知。这种设计使得Rust能够构建高性能的异步运行时系统。
理解这些底层机制对于编写高效的异步代码和调试复杂的异步问题都有很大帮助。希望本文能够帮助你更好地掌握Rust异步编程的核心概念。
登录后查看全文
热门项目推荐
PaddleOCR-VL
PaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
openPangu-Ultra-MoE-718B-V1.1
昇腾原生的开源盘古 Ultra-MoE-718B-V1.1 语言模型Python00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0118AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile011
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起

deepin linux kernel
C
23
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
225
2.27 K

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1

暂无简介
Dart
526
116

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
987
583

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
351
1.42 K

🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
61
17

GLM-4.6在GLM-4.5基础上全面升级:200K超长上下文窗口支持复杂任务,代码性能大幅提升,前端页面生成更优。推理能力增强且支持工具调用,智能体表现更出色,写作风格更贴合人类偏好。八项公开基准测试显示其全面超越GLM-4.5,比肩DeepSeek-V3.1-Terminus等国内外领先模型。【此简介由AI生成】
Jinja
47
0

喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
17
0

React Native鸿蒙化仓库
JavaScript
212
287