深入理解async-book中的Future执行器实现
2025-06-20 22:41:40作者:齐冠琰
前言
在异步编程中,Future是Rust异步生态的核心抽象。然而,Future本身是惰性的,需要被主动驱动才能执行。本文将深入探讨如何构建一个高效的Future执行器(Executor),这是理解Rust异步运行时机制的关键。
Future执行器基础概念
为什么需要执行器
Rust的Future具有惰性求值特性,这意味着:
- 创建Future并不会立即执行
- Future需要被主动轮询(poll)才能推进状态
- 顶层Future需要执行器来驱动
执行器核心职责
一个基本的执行器需要完成以下工作:
- 管理一组待执行的Future任务
- 在适当时候调用poll方法推进Future执行
- 处理wake通知,调度就绪的任务
构建简易执行器
项目结构与依赖
首先需要添加futures crate依赖,它提供了构建Waker所需的工具:
[dependencies]
futures = "0.3"
核心数据结构
执行器主要由两部分组成:
- Executor:负责从任务通道接收并执行任务
- Spawner:提供生成新任务的接口
struct Executor {
ready_queue: Receiver<Arc<Task>>,
}
struct Spawner {
task_sender: SyncSender<Arc<Task>>,
}
struct Task {
future: Mutex<Option<BoxFuture<'static, ()>>>,
task_sender: SyncSender<Arc<Task>>,
}
任务调度原理
- 每个Task包含一个待执行的Future和一个发送器
- 当Future需要被唤醒时,通过发送器将自己重新加入队列
- 执行器不断从队列取出任务并执行
Waker的实现关键
Waker是连接Future和Executor的桥梁:
impl ArcWake for Task {
fn wake_by_ref(arc_self: &Arc<Self>) {
arc_self.task_sender.send(arc_self.clone()).expect("任务队列已满");
}
}
当Future内部调用wake()时,会触发将任务重新加入队列的操作。
执行器工作流程
任务生成
通过Spawner创建新任务:
fn spawn(&self, future: impl Future<Output = ()> + 'static + Send) {
let future = future.boxed();
let task = Arc::new(Task {
future: Mutex::new(Some(future)),
task_sender: self.task_sender.clone(),
});
self.task_sender.send(task).expect("任务队列已满");
}
执行主循环
Executor的核心运行逻辑:
fn run(&self) {
while let Ok(task) = self.ready_queue.recv() {
let mut future_slot = task.future.lock().unwrap();
if let Some(mut future) = future_slot.take() {
let waker = waker_ref(&task);
let context = &mut Context::from_waker(&waker);
if future.as_mut().poll(context).is_pending() {
*future_slot = Some(future);
}
}
}
}
实际应用示例
我们可以使用这个执行器来运行自定义Future:
fn main() {
let (executor, spawner) = new_executor();
// 生成一个定时器Future
spawner.spawn(async {
println!("开始定时器!");
TimerFuture::new(Duration::new(2, 0)).await;
println!("定时器结束!");
});
// 生成一个简单任务
spawner.spawn(async {
println!("你好来自Future!");
task::yield_now().await;
println!("任务完成!");
});
executor.run();
}
执行器设计要点
- 任务调度:使用通道实现简单的任务队列
- 唤醒机制:通过ArcWake实现高效的任务唤醒
- 线程安全:确保Send和Sync约束满足多线程要求
- 资源管理:合理使用Arc进行引用计数
进阶思考
这个基础执行器可以进一步扩展:
- 添加多线程支持
- 实现工作窃取调度
- 增加任务优先级
- 集成IO事件驱动
总结
通过实现一个简易的Future执行器,我们深入理解了Rust异步运行时的核心机制。执行器负责调度和驱动Future执行,而Waker机制则实现了高效的唤醒通知。这种设计使得Rust能够构建高性能的异步运行时系统。
理解这些底层机制对于编写高效的异步代码和调试复杂的异步问题都有很大帮助。希望本文能够帮助你更好地掌握Rust异步编程的核心概念。
登录后查看全文
热门项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C048
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0126
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
440
3.35 K
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
818
390
Ascend Extension for PyTorch
Python
248
285
React Native鸿蒙化仓库
JavaScript
275
329
暂无简介
Dart
701
164
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
135
48
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.23 K
677
本项目是CANN开源社区的核心管理仓库,包含社区的治理章程、治理组织、通用操作指引及流程规范等基础信息
554
110