Saleor 开源电商项目的安装与使用指南
目录结构及介绍
在成功克隆了 https://github.com/saleor/saleor.git 这个仓库之后, Saleor 的项目目录主要结构如下:
.
├── README.md # 项目说明文件
├── CONTRIBUTING.md # 贡献者指南
├── .github # 包含贡献指南和其他Github相关文件
│ ├── ISSUE_TEMPLATE # Github Issue模板
└── saleor # Saleor核心代码所在的目录
├── api # Saleor RESTful API的实现
├── graphql # GraphQL API的实现
├── dashboard # 商家管理后台的前端代码
└── migrations # 数据库迁移脚本
其中关键目录如saleor包含了所有的核心代码。
启动文件介绍
为了运行Saleor, 需要确保你的环境中已安装以下工具和软件包:
- Docker >= 1.12.6
- docker-compose >= 1.6.0
- Python >= 3.8.x
- Pipenv
使用Docker来快速搭建环境是最推荐的方式。首先将Saleor平台的所有组件下载到本地并构建容器镜像,然后使用docker-compose up命令启动所有服务。这其中包括数据库、缓存服务器、邮件服务器等。
对于非Docker方式的启动,则可以通过以下步骤完成:
-
在项目根目录下创建一个虚拟环境并激活它(虚拟环境不是必需的但建议这样做以避免与其他Python项目产生冲突)。
python -m venv my_env source my_env/bin/activate -
安装依赖项。在Saleor的主目录中执行以下命令:
pip install -r requirements.txt -
执行数据库迁移:
alembic upgrade head -
最后,在终端中输入以下命令以启动Saleor应用程序:
python manage.py runserver
此时,你应能够在本地开发环境中访问Saleor。
配置文件介绍
settings.py 文件位于 saleor/saleor/settings.py 目录,是Saleor的关键配置文件,用于定制不同环境下的应用行为。它包含了诸如数据库连接、日志记录、安全设置、第三方集成(例如电子邮件和支付处理程序)等大量配置参数。
这个文件中的主要部分包括:
1. Database settings
定义了默认的数据存储引擎以及其对应的数据库名、用户名和密码。如果你使用的是PostgreSQL,该文件可能看起来像这样:
DATABASES = {
'default': {
'ENGINE': 'django.db.backends.postgresql',
'NAME': 'saleor',
'USER': 'saleor',
'PASSWORD': 'password',
'HOST': 'localhost',
'PORT': '',
}
}
2. Cache settings
详细描述了应用使用的缓存机制及其配置。可能有多种缓存配置,例如基于内存或分布式缓存系统。
3. Security settings
这里列出了各种安全相关的配置,比如密码复杂度要求、CSRF防护策略等。
4. Email Configuration
详细介绍了如何通过SMTP服务器发送电子邮件通知的信息。
5. Payment Gateway Settings
列出应用支持的支付网关(如PayPal),及其所需的API密钥或其他认证信息。
综上所述,settings.py 是Saleor项目中重要的组成部分,负责维护整个应用的基础架构和服务配置,从而保证其实现既定的功能且满足业务需求。
以上就是关于Saleor开源电商项目的安装、使用以及配置文件解析的基本教程。希望对初学者有所帮助!
请注意,具体细节可能会因版本更新而变化;因此,强烈建议参考Saleor的官方文档进行更深入的学习与探索。
如果您遇到任何问题或者有任何反馈,欢迎随时通过Issue或Pull Request的方式与社区联系。Enjoy coding!
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00