如何在COCO-Annotator中通过API获取数据集全部图片ID
背景介绍
COCO-Annotator是一个基于Web的开源图像标注工具,它提供了RESTful API接口供开发者进行二次开发。在实际项目中,我们经常需要批量获取数据集中所有图片的ID信息,用于后续的自动化处理流程。
问题分析
通过查阅COCO-Annotator的API文档和源代码,我们发现/api/dataset/{id}/data接口默认只返回第一页的数据,每页默认显示20条记录。这对于包含大量图片的数据集来说显然不够,我们需要找到获取全部图片ID的方法。
解决方案
1. 理解分页机制
COCO-Annotator的API采用了典型的分页设计,主要包含以下参数:
page:当前页码,从1开始limit:每页显示数量,默认20folder:指定文件夹路径order:排序字段
2. 实现完整数据获取
要获取数据集中的所有图片ID,我们需要:
- 首先发送一个初始请求获取总记录数
- 根据总记录数和每页大小计算总页数
- 循环请求所有页面的数据
- 合并所有结果
3. 代码实现示例
以下是Python实现的完整示例代码:
import requests
def get_all_image_ids(base_url, dataset_id, token=None):
"""
获取数据集中所有图片ID
:param base_url: API基础地址
:param dataset_id: 数据集ID
:param token: 认证token
:return: 图片ID列表
"""
headers = {'Accept': 'application/json'}
cookies = token if token else None
# 初始请求获取分页信息
params = {'page': 1, 'limit': 1}
url = f"{base_url}/api/dataset/{dataset_id}/data"
response = requests.get(url, headers=headers, cookies=cookies, params=params)
if response.status_code != 200:
raise Exception(f"请求失败: {response.status_code}")
data = response.json()
total_images = data['total']
per_page = 100 # 每页获取100条记录
# 计算总页数
total_pages = (total_images + per_page - 1) // per_page
all_images = []
for page in range(1, total_pages + 1):
params = {'page': page, 'limit': per_page}
response = requests.get(url, headers=headers, cookies=cookies, params=params)
page_data = response.json()
all_images.extend([img['id'] for img in page_data['images']])
return all_images
技术要点解析
-
分页参数传递:COCO-Annotator的API设计采用了查询参数(Query Parameters)的方式传递分页信息,而不是URL路径参数。
-
性能优化:通过适当增大每页获取数量(如设置为100),可以减少API请求次数,提高整体效率。
-
错误处理:实际应用中应该添加更完善的错误处理机制,包括网络异常、认证失败等情况。
-
内存考虑:对于特别大的数据集,可以考虑流式处理或分批处理,避免一次性加载过多数据导致内存问题。
扩展应用
掌握了这个基础方法后,我们可以进一步扩展实现:
-
增量同步:通过记录最后获取的图片ID,实现增量数据同步。
-
条件筛选:结合其他参数如
annotated(是否已标注)进行筛选。 -
并行请求:对于大型数据集,可以使用多线程/协程并发请求不同页面的数据。
总结
通过分析COCO-Annotator的API设计,我们找到了高效获取数据集中所有图片ID的方法。关键在于理解其分页机制并合理设置请求参数。这一技术不仅适用于图片ID获取,也可以应用于其他需要批量获取数据的场景。在实际项目中,建议根据具体需求对基础方法进行适当封装和优化。
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCR暂无简介Python00
openPangu-Ultra-MoE-718B-V1.1昇腾原生的开源盘古 Ultra-MoE-718B-V1.1 语言模型Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
AI内容魔方AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。03
Spark-Scilit-X1-13BFLYTEK Spark Scilit-X1-13B is based on the latest generation of iFLYTEK Foundation Model, and has been trained on multiple core tasks derived from scientific literature. As a large language model tailored for academic research scenarios, it has shown excellent performance in Paper Assisted Reading, Academic Translation, English Polishing, and Review Generation, aiming to provide efficient and accurate intelligent assistance for researchers, faculty members, and students.Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile013
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00