如何在COCO-Annotator中通过API获取数据集全部图片ID
背景介绍
COCO-Annotator是一个基于Web的开源图像标注工具,它提供了RESTful API接口供开发者进行二次开发。在实际项目中,我们经常需要批量获取数据集中所有图片的ID信息,用于后续的自动化处理流程。
问题分析
通过查阅COCO-Annotator的API文档和源代码,我们发现/api/dataset/{id}/data接口默认只返回第一页的数据,每页默认显示20条记录。这对于包含大量图片的数据集来说显然不够,我们需要找到获取全部图片ID的方法。
解决方案
1. 理解分页机制
COCO-Annotator的API采用了典型的分页设计,主要包含以下参数:
page:当前页码,从1开始limit:每页显示数量,默认20folder:指定文件夹路径order:排序字段
2. 实现完整数据获取
要获取数据集中的所有图片ID,我们需要:
- 首先发送一个初始请求获取总记录数
- 根据总记录数和每页大小计算总页数
- 循环请求所有页面的数据
- 合并所有结果
3. 代码实现示例
以下是Python实现的完整示例代码:
import requests
def get_all_image_ids(base_url, dataset_id, token=None):
"""
获取数据集中所有图片ID
:param base_url: API基础地址
:param dataset_id: 数据集ID
:param token: 认证token
:return: 图片ID列表
"""
headers = {'Accept': 'application/json'}
cookies = token if token else None
# 初始请求获取分页信息
params = {'page': 1, 'limit': 1}
url = f"{base_url}/api/dataset/{dataset_id}/data"
response = requests.get(url, headers=headers, cookies=cookies, params=params)
if response.status_code != 200:
raise Exception(f"请求失败: {response.status_code}")
data = response.json()
total_images = data['total']
per_page = 100 # 每页获取100条记录
# 计算总页数
total_pages = (total_images + per_page - 1) // per_page
all_images = []
for page in range(1, total_pages + 1):
params = {'page': page, 'limit': per_page}
response = requests.get(url, headers=headers, cookies=cookies, params=params)
page_data = response.json()
all_images.extend([img['id'] for img in page_data['images']])
return all_images
技术要点解析
-
分页参数传递:COCO-Annotator的API设计采用了查询参数(Query Parameters)的方式传递分页信息,而不是URL路径参数。
-
性能优化:通过适当增大每页获取数量(如设置为100),可以减少API请求次数,提高整体效率。
-
错误处理:实际应用中应该添加更完善的错误处理机制,包括网络异常、认证失败等情况。
-
内存考虑:对于特别大的数据集,可以考虑流式处理或分批处理,避免一次性加载过多数据导致内存问题。
扩展应用
掌握了这个基础方法后,我们可以进一步扩展实现:
-
增量同步:通过记录最后获取的图片ID,实现增量数据同步。
-
条件筛选:结合其他参数如
annotated(是否已标注)进行筛选。 -
并行请求:对于大型数据集,可以使用多线程/协程并发请求不同页面的数据。
总结
通过分析COCO-Annotator的API设计,我们找到了高效获取数据集中所有图片ID的方法。关键在于理解其分页机制并合理设置请求参数。这一技术不仅适用于图片ID获取,也可以应用于其他需要批量获取数据的场景。在实际项目中,建议根据具体需求对基础方法进行适当封装和优化。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00