UniDistill安装与使用指南
项目概述
UniDistill 是一个由Megvii Research团队开发的CVPR 2023亮点项目,它提供了一个通用的跨模态知识蒸馏框架,专为鸟瞰视角下的3D目标检测设计。该框架支持不同教师和学生模态组合间的知识传递,旨在提升多传感器数据融合场景下的检测性能。
1. 目录结构及介绍
项目的主要目录结构布局如下:
CVPR2023-UniDistill/
├── code # 核心代码库
│ ├── ... # 其他子目录和源码文件
├── configs # 配置文件夹,包含模型训练、测试等设置
├── data # 数据预处理和存放结果的示例路径
│ └── dataset # 实际数据集存放位置
├── docs # 文档和说明文档
├── experiments # 实验脚本,包括训练、测试和知识蒸馏的具体实验配置
│ ├── multisensor_fusion
│ └── nuscenes # NuScenes数据集相关实验
├── logs # 日志文件存放位置
├── tools # 工具脚本,用于训练、评估、测试等
├── unidistill # 主要库代码
│ ├── __init__.py
│ └── ... # 更多模块和函数
├── README.md # 项目介绍和快速入门指南
└── requirements.txt # 项目依赖列表
- code 包含了实现核心功能的Python代码。
- configs 存放各种实验配置文件,定义模型架构、训练参数等。
- experiments 提供具体的实验案例脚本,便于复现研究结果。
- data 用于指导数据准备流程,实际的数据应按要求结构摆放在此处。
- tools 内有执行命令如训练、测试的核心脚本。
- requirements.txt 列出了项目所需的Python包及其版本。
2. 项目的启动文件介绍
训练教师模型
训练教师模型通常通过位于experiments/multisensor_fusion/nuscenes/BEVFusion/BEVFusion_nuscenes_centerhead_<MODALITY>_exp.py
的脚本来进行,其中<MODALITY>
指代具体使用的传感器类型(如camera或lidar)。
知识蒸馏与学生模型训练
知识蒸馏过程同样基于上述脚本但需指定蒸馏版本,例如BEVFusion_nuscenes_centerhead_<MODALITY_2>_exp_distill_<MODALITY_1>.py
,这里<MODALITY_1>
是教师模态,<MODALITY_2>
是学生模态。
测试与评估
进行模型测试或评估的命令会在脚本中指定测试或评估模式(如通过-e
标志),示例脚本类似于教师或学生训练脚本,但调用时可能需要指定检查点路径。
3. 项目的配置文件介绍
配置文件主要位于configs
目录下,以.py
形式存在。这些文件定义了模型结构、优化器设置、学习率策略、数据加载器配置以及蒸馏特定的超参数。例如,一个典型的配置文件BEVFusion_nuscenes_centerhead_camera_exp.py
将包括网络结构、损失函数、数据预处理步骤以及训练与测试的详细参数。用户可以通过修改这些配置文件来适应不同的实验需求,比如改变批次大小、调整学习率或者启用/禁用特定的训练特性。
示例配置片段
假设您查看一个配置文件,里面可能有以下关键部分:
model = dict(
type='YourModelType',
backbone=dict(...
),
neck=dict(...),
bbox_head=dict(
type='BBoxHeadType',
num_classes=10,
...
),
train_cfg=dict(...),
test_cfg=dict(...))
dataset_type = 'NuScenesDataset'
data_root = 'data/nuscenes/'
这里展示了模型的基本配置、数据集类型及其根目录等。每个配置项都直接影响模型的构建与训练过程。
此指南提供了UniDistill项目的基本导航,详细实践还需参考官方GitHub仓库中的具体文档和脚本说明。确保遵循其提供的安装指示和实验步骤,以便正确地利用这一强大工具。
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~058CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。07GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0382- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选









