AlphaFold3 中双链抗体结构预测的输入文件配置指南
2025-06-03 14:55:00作者:伍希望
理解AlphaFold3的输入要求
AlphaFold3作为DeepMind推出的最新蛋白质结构预测工具,在处理复杂蛋白质复合物时展现了强大的能力。对于抗体这类由重链(H链)和轻链(L链)组成的特殊蛋白质,正确配置输入文件是获得准确预测结果的关键前提。
双链抗体的JSON文件结构
在AlphaFold3中,预测双链抗体结构需要构建特定的JSON输入文件。该文件需要明确指定两条独立的蛋白质链序列及其对应标识符。以下是标准格式:
{
"name": "自定义任务名称",
"sequences": [
{
"proteinChain": {
"sequence": "重链氨基酸序列",
"count": 1,
"useStructureTemplate": true
}
},
{
"proteinChain": {
"sequence": "轻链氨基酸序列",
"count": 1,
"useStructureTemplate": true
}
}
],
"modelSeeds": [1454560155],
"dialect": "alphafoldserver",
"version": 1
}
关键参数解析
-
name字段:为预测任务指定一个描述性名称,便于后续识别。
-
sequences数组:包含两个独立对象,分别对应抗体的重链和轻链。
-
proteinChain对象:
sequence:必须提供完整的氨基酸单字母序列count:设置为1表示单拷贝useStructureTemplate:建议设为true以启用模板辅助预测
-
modelSeeds:随机数种子,影响模型初始化,可保持默认。
-
dialect和version:指定使用的AlphaFold版本和API格式。
实际应用示例
假设我们需要预测一个抗体,其重链序列为"VQLQESDAELVKPG...",轻链序列为"IELTQSPSSLSASL...",则完整的JSON配置如下:
{
"name": "抗体结构预测_2025",
"sequences": [
{
"proteinChain": {
"sequence": "VQLQESDAELVKPGASVKISCKASGYTFTDHVIHWVKQKPEQGLEWIGYISPGNGDIKYNEKFKGKATLTADKSSSTAYMQLNSLTSEDSAVYLCKRGYYVDYWGQGTTLTVSSAKTTPPSVYPLAPSMVTLGCLVKGYFPEPVTVTWNSGSLSSGVHTFPAVLQSDLYTLSSSVTVPSSTWPSETVTCNVAHPASSTKVDKKIE",
"count": 1,
"useStructureTemplate": true
}
},
{
"proteinChain": {
"sequence": "IELTQSPSSLSASLGGKVTITCKASQDIKKYIGWYQHKPGKQPRLLIHYTSTLLPGIPSRFRGSGSGRDYSFSISNLEPEDIATYYCLQYYNLRTFGGGTKLEIKRADAAPTVSIFPPSSEQLTSGGASVVCFLNNFYSKDINVKWKIDGSERQNGVLNSWTDQDSKDSTYSMSSTLTLTKDEYERHNSYTCEATHKTSTSPIVKSFNRNE",
"count": 1,
"useStructureTemplate": true
}
}
],
"modelSeeds": [1],
"dialect": "alphafold3",
"version": 1
}
使用建议
-
对于抗体预测,建议启用结构模板(useStructureTemplate)以获得更准确的结果。
-
可以通过AlphaFoldServer的图形界面直接输入序列,系统会自动生成相应的JSON配置。
-
对于复杂抗体(如双特异性抗体),需要相应增加proteinChain对象的数量。
-
预测结果的质量与输入序列的完整性直接相关,务必确保序列准确无误。
通过正确配置JSON输入文件,研究人员可以利用AlphaFold3强大的预测能力,快速获得抗体等复杂蛋白质的三维结构模型,为后续的抗体工程和药物设计提供重要参考。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C080
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python056
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0135
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
465
3.46 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
197
80
暂无简介
Dart
715
172
Ascend Extension for PyTorch
Python
273
310
React Native鸿蒙化仓库
JavaScript
285
331
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
843
424
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.26 K
692
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
106
120