AlphaFold3 中双链抗体结构预测的输入文件配置指南
2025-06-03 07:37:43作者:伍希望
理解AlphaFold3的输入要求
AlphaFold3作为DeepMind推出的最新蛋白质结构预测工具,在处理复杂蛋白质复合物时展现了强大的能力。对于抗体这类由重链(H链)和轻链(L链)组成的特殊蛋白质,正确配置输入文件是获得准确预测结果的关键前提。
双链抗体的JSON文件结构
在AlphaFold3中,预测双链抗体结构需要构建特定的JSON输入文件。该文件需要明确指定两条独立的蛋白质链序列及其对应标识符。以下是标准格式:
{
"name": "自定义任务名称",
"sequences": [
{
"proteinChain": {
"sequence": "重链氨基酸序列",
"count": 1,
"useStructureTemplate": true
}
},
{
"proteinChain": {
"sequence": "轻链氨基酸序列",
"count": 1,
"useStructureTemplate": true
}
}
],
"modelSeeds": [1454560155],
"dialect": "alphafoldserver",
"version": 1
}
关键参数解析
-
name字段:为预测任务指定一个描述性名称,便于后续识别。
-
sequences数组:包含两个独立对象,分别对应抗体的重链和轻链。
-
proteinChain对象:
sequence:必须提供完整的氨基酸单字母序列count:设置为1表示单拷贝useStructureTemplate:建议设为true以启用模板辅助预测
-
modelSeeds:随机数种子,影响模型初始化,可保持默认。
-
dialect和version:指定使用的AlphaFold版本和API格式。
实际应用示例
假设我们需要预测一个抗体,其重链序列为"VQLQESDAELVKPG...",轻链序列为"IELTQSPSSLSASL...",则完整的JSON配置如下:
{
"name": "抗体结构预测_2025",
"sequences": [
{
"proteinChain": {
"sequence": "VQLQESDAELVKPGASVKISCKASGYTFTDHVIHWVKQKPEQGLEWIGYISPGNGDIKYNEKFKGKATLTADKSSSTAYMQLNSLTSEDSAVYLCKRGYYVDYWGQGTTLTVSSAKTTPPSVYPLAPSMVTLGCLVKGYFPEPVTVTWNSGSLSSGVHTFPAVLQSDLYTLSSSVTVPSSTWPSETVTCNVAHPASSTKVDKKIE",
"count": 1,
"useStructureTemplate": true
}
},
{
"proteinChain": {
"sequence": "IELTQSPSSLSASLGGKVTITCKASQDIKKYIGWYQHKPGKQPRLLIHYTSTLLPGIPSRFRGSGSGRDYSFSISNLEPEDIATYYCLQYYNLRTFGGGTKLEIKRADAAPTVSIFPPSSEQLTSGGASVVCFLNNFYSKDINVKWKIDGSERQNGVLNSWTDQDSKDSTYSMSSTLTLTKDEYERHNSYTCEATHKTSTSPIVKSFNRNE",
"count": 1,
"useStructureTemplate": true
}
}
],
"modelSeeds": [1],
"dialect": "alphafold3",
"version": 1
}
使用建议
-
对于抗体预测,建议启用结构模板(useStructureTemplate)以获得更准确的结果。
-
可以通过AlphaFoldServer的图形界面直接输入序列,系统会自动生成相应的JSON配置。
-
对于复杂抗体(如双特异性抗体),需要相应增加proteinChain对象的数量。
-
预测结果的质量与输入序列的完整性直接相关,务必确保序列准确无误。
通过正确配置JSON输入文件,研究人员可以利用AlphaFold3强大的预测能力,快速获得抗体等复杂蛋白质的三维结构模型,为后续的抗体工程和药物设计提供重要参考。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
项目优选
收起
deepin linux kernel
C
24
7
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
375
3.25 K
暂无简介
Dart
619
140
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
62
19
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
479
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
647
261
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.09 K
619
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
790
76