AlphaFold3 中双链抗体结构预测的输入文件配置指南
2025-06-03 21:32:01作者:伍希望
理解AlphaFold3的输入要求
AlphaFold3作为DeepMind推出的最新蛋白质结构预测工具,在处理复杂蛋白质复合物时展现了强大的能力。对于抗体这类由重链(H链)和轻链(L链)组成的特殊蛋白质,正确配置输入文件是获得准确预测结果的关键前提。
双链抗体的JSON文件结构
在AlphaFold3中,预测双链抗体结构需要构建特定的JSON输入文件。该文件需要明确指定两条独立的蛋白质链序列及其对应标识符。以下是标准格式:
{
"name": "自定义任务名称",
"sequences": [
{
"proteinChain": {
"sequence": "重链氨基酸序列",
"count": 1,
"useStructureTemplate": true
}
},
{
"proteinChain": {
"sequence": "轻链氨基酸序列",
"count": 1,
"useStructureTemplate": true
}
}
],
"modelSeeds": [1454560155],
"dialect": "alphafoldserver",
"version": 1
}
关键参数解析
-
name字段:为预测任务指定一个描述性名称,便于后续识别。
-
sequences数组:包含两个独立对象,分别对应抗体的重链和轻链。
-
proteinChain对象:
sequence
:必须提供完整的氨基酸单字母序列count
:设置为1表示单拷贝useStructureTemplate
:建议设为true以启用模板辅助预测
-
modelSeeds:随机数种子,影响模型初始化,可保持默认。
-
dialect和version:指定使用的AlphaFold版本和API格式。
实际应用示例
假设我们需要预测一个抗体,其重链序列为"VQLQESDAELVKPG...",轻链序列为"IELTQSPSSLSASL...",则完整的JSON配置如下:
{
"name": "抗体结构预测_2025",
"sequences": [
{
"proteinChain": {
"sequence": "VQLQESDAELVKPGASVKISCKASGYTFTDHVIHWVKQKPEQGLEWIGYISPGNGDIKYNEKFKGKATLTADKSSSTAYMQLNSLTSEDSAVYLCKRGYYVDYWGQGTTLTVSSAKTTPPSVYPLAPSMVTLGCLVKGYFPEPVTVTWNSGSLSSGVHTFPAVLQSDLYTLSSSVTVPSSTWPSETVTCNVAHPASSTKVDKKIE",
"count": 1,
"useStructureTemplate": true
}
},
{
"proteinChain": {
"sequence": "IELTQSPSSLSASLGGKVTITCKASQDIKKYIGWYQHKPGKQPRLLIHYTSTLLPGIPSRFRGSGSGRDYSFSISNLEPEDIATYYCLQYYNLRTFGGGTKLEIKRADAAPTVSIFPPSSEQLTSGGASVVCFLNNFYSKDINVKWKIDGSERQNGVLNSWTDQDSKDSTYSMSSTLTLTKDEYERHNSYTCEATHKTSTSPIVKSFNRNE",
"count": 1,
"useStructureTemplate": true
}
}
],
"modelSeeds": [1],
"dialect": "alphafold3",
"version": 1
}
使用建议
-
对于抗体预测,建议启用结构模板(useStructureTemplate)以获得更准确的结果。
-
可以通过AlphaFoldServer的图形界面直接输入序列,系统会自动生成相应的JSON配置。
-
对于复杂抗体(如双特异性抗体),需要相应增加proteinChain对象的数量。
-
预测结果的质量与输入序列的完整性直接相关,务必确保序列准确无误。
通过正确配置JSON输入文件,研究人员可以利用AlphaFold3强大的预测能力,快速获得抗体等复杂蛋白质的三维结构模型,为后续的抗体工程和药物设计提供重要参考。
登录后查看全文
热门项目推荐
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~044CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0300- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
1 freeCodeCamp 课程中反馈文本问题的分析与修复2 freeCodeCamp课程中JavaScript变量提升机制的修正说明3 freeCodeCamp 前端开发实验室:排列生成器代码规范优化4 freeCodeCamp课程中"构建电子邮件掩码器"项目文档优化建议5 freeCodeCamp Cafe Menu项目中的HTML void元素解析6 freeCodeCamp计算机基础测验题目优化分析7 freeCodeCamp全栈开发课程中Navbar组件构建的优化建议8 freeCodeCamp 优化测验提交确认弹窗的用户体验9 freeCodeCamp平台证书查看功能异常的技术分析10 freeCodeCamp全栈开发课程中回文检测器项目的正则表达式教学优化
最新内容推荐
OMNeT++中文使用手册:网络仿真的终极指南与实用教程 基于Matlab的等几何分析IGA软件包:工程计算与几何建模的完美融合 PADS元器件位号居中脚本:提升PCB设计效率的自动化利器 电脑PC网易云音乐免安装皮肤插件使用指南:个性化音乐播放体验 Python Django图书借阅管理系统:高效智能的图书馆管理解决方案 Python开发者的macOS终极指南:VSCode安装配置全攻略 WebVideoDownloader:高效网页视频抓取工具全面使用指南 ReportMachine.v7.0D5-XE10:Delphi报表生成利器深度解析与实战指南 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 海康威视DS-7800N-K1固件升级包全面解析:提升安防设备性能的关键资源
项目优选
收起

React Native鸿蒙化仓库
C++
176
261

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
860
511

🔥🔥🔥ShopXO企业级免费开源商城系统,可视化DIY拖拽装修、包含PC、H5、多端小程序(微信+支付宝+百度+头条&抖音+QQ+快手)、APP、多仓库、多商户、多门店、IM客服、进销存,遵循MIT开源协议发布、基于ThinkPHP8框架研发
JavaScript
93
15

openGauss kernel ~ openGauss is an open source relational database management system
C++
129
182

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
259
300

deepin linux kernel
C
22
5

🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
595
57

为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.07 K
0

本仓将收集和展示仓颉鸿蒙应用示例代码,欢迎大家投稿,在仓颉鸿蒙社区展现你的妙趣设计!
Cangjie
398
371

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
332
1.08 K