Neo4j知识图谱构建器部署与多语言适配实践
2025-06-24 18:10:31作者:明树来
项目背景
Neo4j知识图谱构建器(Neo4j Knowledge Graph Builder)是一个基于React和FastAPI构建的开源项目,用于创建和管理知识图谱。该项目包含前端React应用和后端FastAPI服务,通常需要部署在云服务器上供团队协作使用。
部署挑战与解决方案
防火墙环境下的部署问题
在公有云VM部署时遇到的主要挑战是防火墙环境下的跨域访问限制。由于浏览器同源策略要求,前端React应用需要与后端API在同一域名下访问。作者最初尝试通过Nginx反向代理将前后端统一到同一域名下,但遇到了404错误。
经过分析发现,Docker容器间的网络通信存在限制。最终采用的解决方案是:
-
前端直接暴露端口访问
- 保持前端原始配置,不通过反向代理
- 直接通过http://服务器IP:4040访问前端
-
后端通过Nginx反向代理
- 配置Nginx将/kgbuilderapi路径代理到后端服务
- 允许特定端口通过防火墙
-
后端添加CORS支持
- 在FastAPI应用中添加CORSMiddleware
- 配置允许所有来源的跨域请求
app.add_middleware(
CORSMiddleware,
allow_origins=["*"],
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"]
)
多语言评估指标适配
项目中的评估指标最初仅支持英语,为了支持中文等其它语言,作者进行了以下改进:
-
环境变量配置
- 在.env文件中添加LANGUAGE变量
- 通过docker-compose.yml传递给后端容器
-
升级ragas版本
- 将ragas升级到0.2.11版本
- 该版本支持多语言指标适配
-
自定义AnswerRelevancy指标
- 创建适配目标语言的answer_relevancy函数
- 使用async/await处理异步提示适配
def adapted_answer_relevancy(llm, embeddings):
answer_relevancy = AnswerRelevancy(
name="answer_relevancy", strictness=3, embeddings=embeddings
)
async def adapt_prompt():
adapted_prompts = await answer_relevancy.adapt_prompts(language=LANGUAGE, llm=llm)
return adapted_prompts
adapted_prompts = asyncio.run(adapt_prompt())
answer_relevancy.set_prompts(**adapted_prompts)
return answer_relevancy
部署架构建议
对于生产环境部署,建议采用以下架构:
-
前端服务
- 使用Nginx作为静态文件服务器
- 配置适当的缓存策略
- 启用HTTPS加密
-
后端服务
- 使用Gunicorn或Uvicorn作为应用服务器
- 配置合理的worker数量
- 启用日志记录和监控
-
数据库连接
- 使用连接池管理Neo4j连接
- 配置适当的超时和重试策略
- 启用TLS加密连接
性能优化建议
-
嵌入模型优化
- 根据目标语言选择合适的嵌入模型
- 考虑使用量化模型减少内存占用
- 启用模型缓存机制
-
评估指标优化
- 对长文本评估进行分块处理
- 实现异步批量评估
- 缓存评估结果
-
资源监控
- 监控GPU/CPU使用率
- 跟踪内存消耗
- 设置资源使用阈值告警
总结
通过本文介绍的部署方案,成功解决了Neo4j知识图谱构建器在防火墙环境下的部署问题,并实现了对中文等多语言的支持。这些实践经验对于类似的知识图谱项目部署具有参考价值,特别是在需要跨域访问和多语言支持的场景下。
未来可以考虑进一步优化前端反向代理方案,使其能够与后端服务统一域名访问,同时保持安全性和性能。此外,持续完善多语言支持,特别是非拉丁语系语言的评估指标适配,将大大提升项目的国际化能力。
登录后查看全文
热门项目推荐
相关项目推荐
HunyuanImage-3.0
HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0369Hunyuan3D-Part
腾讯混元3D-Part00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++095AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起

deepin linux kernel
C
22
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
197
2.17 K

React Native鸿蒙化仓库
C++
208
285

Ascend Extension for PyTorch
Python
59
94

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
973
574

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1

本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
549
81

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
399

本项目是CANN开源社区的核心管理仓库,包含社区的治理章程、治理组织、通用操作指引及流程规范等基础信息
393
27

前端智能化场景解决方案UI库,轻松构建你的AI应用,我们将持续完善更新,欢迎你的使用与建议。
官网地址:https://matechat.gitcode.com
1.2 K
133