使用SBOM工具为Gradle项目生成构建感知的SBOM文件
在软件开发过程中,软件物料清单(SBOM)对于安全审计和依赖管理至关重要。本文将详细介绍如何利用microsoft/sbom-tool为Gradle项目生成包含完整依赖信息的构建感知SBOM。
背景知识
SBOM(Software Bill of Materials)是记录软件组件及其关系的清单文件。对于基于Gradle构建的Java项目,传统的SBOM生成方式可能无法捕获完整的依赖树,特别是间接依赖关系。microsoft/sbom-tool提供了解决方案,但需要正确配置才能生成完整的构建感知SBOM。
传统方法的局限性
直接运行sbom generate命令通常只会生成项目文件级别的SBOM,而不会包含构建过程中的依赖信息。这是因为Gradle的依赖解析是动态进行的,需要特殊处理才能捕获完整的依赖树。
解决方案:通过Gradle锁文件生成SBOM
1. 修改build.gradle配置
首先需要在项目的build.gradle文件中添加依赖锁定配置。在dependencies{}块之前添加以下内容:
configurations {
releaseRuntimeClasspath {
resolutionStrategy.activateDependencyLocking()
}
}
这段配置会为releaseRuntimeClasspath配置启用依赖锁定功能,这是生成完整依赖树的关键步骤。
2. 检查可用配置
在命令行中运行以下命令可以查看所有可用的配置:
gradle resolvableConfigurations
要检查特定配置(如releaseRuntimeClasspath)的依赖关系,可以运行:
gradle dependencies --configuration releaseRuntimeClasspath
3. 生成锁文件
执行以下命令生成gradle.lockfile:
gradle dependencies --write-locks
这个锁文件会记录当前项目的所有依赖关系,包括直接和间接依赖。
4. 生成SBOM
最后,使用sbom-tool生成包含完整依赖信息的SBOM:
sbom generate -b . -bc . -pn mygradle-project -pv 1.0 -ps dinesh -nsb https://dinesh.com -v Verbose
参数说明
-b:指定构建目录-bc:指定构建组件目录-pn:项目名称-pv:项目版本-ps:项目供应商-nsb:命名空间基础URI-v:详细级别
技术原理
这种方法的核心在于利用了Gradle的依赖锁定机制。当启用dependencyLocking并生成锁文件后,Gradle会将依赖解析的结果持久化到gradle.lockfile中。SBOM工具可以读取这个文件,从而获取完整的依赖信息,包括传递性依赖。
最佳实践建议
- 将gradle.lockfile纳入版本控制系统,确保团队所有成员使用相同的依赖版本
- 在CI/CD流程中集成SBOM生成步骤,确保每次构建都生成最新的SBOM
- 定期审查SBOM文件,及时发现和解决潜在的安全漏洞
- 对于多模块项目,需要在每个子模块中单独配置依赖锁定
通过这种方法生成的SBOM不仅包含项目本身的文件信息,还完整记录了构建过程中的所有依赖关系,实现了真正的构建感知SBOM,为软件供应链安全提供了坚实基础。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00