RP-HAL项目中ADC单次采样模式的实现方案
2025-07-10 01:51:25作者:侯霆垣
在嵌入式开发中,模拟数字转换器(ADC)的采样模式选择对系统性能有重要影响。本文将探讨在RP-HAL项目中实现ADC单次采样模式的几种技术方案。
单次采样模式的应用场景
单次采样模式特别适合低速采样的应用场景,例如:
- 环境温度监测(1Hz或更低频率)
- 电池电压检测
- 用户电位器调节
- 其他对实时性要求不高的模拟信号采集
这种模式下,ADC仅在需要时进行采样,可以显著降低系统功耗,特别适合电池供电设备。
RP-HAL中的实现方案
方案一:使用embedded-hal 0.2.x的OneShot特性
虽然RP-HAL主要基于embedded-hal 1.0.0,但依然可以通过依赖embedded-hal 0.2.x来使用其提供的OneShot特性。这种方案最为直接,代码简洁明了:
use embedded_hal_02::adc::OneShot;
let adc_pin1 = pins.gpio26.into_floating_input();
let adc_pin2 = pins.gpio27.into_floating_input();
let value1: u16 = adc.read(&mut adc_pin1).unwrap();
let value2: u16 = adc.read(&mut adc_pin2).unwrap();
方案二:使用底层寄存器控制
对于希望避免多版本依赖的开发者,可以直接操作RP2040的ADC寄存器:
- 配置ADC控制寄存器为单次转换模式
- 选择输入通道
- 启动转换
- 等待转换完成
- 读取结果寄存器
这种方案提供了最大的灵活性,但需要开发者对硬件寄存器有深入了解。
方案三:FIFO缓冲区方案
对于需要轮询多个通道的场景,可以使用FIFO缓冲区结合RTIC定时器:
// 配置ADC使用FIFO
let mut adc = Adc::new(peripherals.ADC, &mut peripherals.RESETS);
adc.fifo_setup();
adc.set_round_robin(&[0, 1]); // 通道0和1轮询
// 在RTIC定时任务中
adc.fifo_unpause();
while adc.fifo_level() < 2 {
// 等待两个通道数据
}
let ch0_value = adc.fifo_read().unwrap();
let ch1_value = adc.fifo_read().unwrap();
adc.fifo_pause();
这种方案虽然需要更多代码,但在多通道场景下效率更高,且避免了版本依赖问题。
方案比较与选择建议
| 方案 | 优点 | 缺点 | 适用场景 |
|---|---|---|---|
| OneShot | 代码简洁,易用性高 | 需要多版本依赖 | 快速原型开发 |
| 寄存器控制 | 无额外依赖,完全控制 | 代码复杂,维护困难 | 需要特殊配置的场景 |
| FIFO方案 | 多通道效率高 | 实现稍复杂 | 多通道轮询场景 |
对于大多数应用,特别是初学者,推荐使用OneShot方案,它的简洁性可以加速开发过程。对于有特殊需求或希望减少依赖的开发者,FIFO方案提供了良好的平衡。只有在需要对ADC行为进行精细控制时,才建议直接操作寄存器。
最佳实践建议
- 对于低频采样(如1Hz),考虑在采样间隔将ADC完全关闭以节省功耗
- 在多通道应用中,合理设置采样间隔以避免通道间串扰
- 对于关键应用,实现超时机制防止ADC挂起
- 考虑在采样前加入少量延迟,确保信号稳定
通过合理选择ADC工作模式,开发者可以在满足应用需求的同时优化系统性能和功耗。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
532
3.75 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
67
20
暂无简介
Dart
772
191
Ascend Extension for PyTorch
Python
340
405
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
React Native鸿蒙化仓库
JavaScript
303
355
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178