RP-HAL项目中ADC单次采样模式的实现方案
2025-07-10 18:33:41作者:侯霆垣
在嵌入式开发中,模拟数字转换器(ADC)的采样模式选择对系统性能有重要影响。本文将探讨在RP-HAL项目中实现ADC单次采样模式的几种技术方案。
单次采样模式的应用场景
单次采样模式特别适合低速采样的应用场景,例如:
- 环境温度监测(1Hz或更低频率)
- 电池电压检测
- 用户电位器调节
- 其他对实时性要求不高的模拟信号采集
这种模式下,ADC仅在需要时进行采样,可以显著降低系统功耗,特别适合电池供电设备。
RP-HAL中的实现方案
方案一:使用embedded-hal 0.2.x的OneShot特性
虽然RP-HAL主要基于embedded-hal 1.0.0,但依然可以通过依赖embedded-hal 0.2.x来使用其提供的OneShot特性。这种方案最为直接,代码简洁明了:
use embedded_hal_02::adc::OneShot;
let adc_pin1 = pins.gpio26.into_floating_input();
let adc_pin2 = pins.gpio27.into_floating_input();
let value1: u16 = adc.read(&mut adc_pin1).unwrap();
let value2: u16 = adc.read(&mut adc_pin2).unwrap();
方案二:使用底层寄存器控制
对于希望避免多版本依赖的开发者,可以直接操作RP2040的ADC寄存器:
- 配置ADC控制寄存器为单次转换模式
- 选择输入通道
- 启动转换
- 等待转换完成
- 读取结果寄存器
这种方案提供了最大的灵活性,但需要开发者对硬件寄存器有深入了解。
方案三:FIFO缓冲区方案
对于需要轮询多个通道的场景,可以使用FIFO缓冲区结合RTIC定时器:
// 配置ADC使用FIFO
let mut adc = Adc::new(peripherals.ADC, &mut peripherals.RESETS);
adc.fifo_setup();
adc.set_round_robin(&[0, 1]); // 通道0和1轮询
// 在RTIC定时任务中
adc.fifo_unpause();
while adc.fifo_level() < 2 {
// 等待两个通道数据
}
let ch0_value = adc.fifo_read().unwrap();
let ch1_value = adc.fifo_read().unwrap();
adc.fifo_pause();
这种方案虽然需要更多代码,但在多通道场景下效率更高,且避免了版本依赖问题。
方案比较与选择建议
| 方案 | 优点 | 缺点 | 适用场景 |
|---|---|---|---|
| OneShot | 代码简洁,易用性高 | 需要多版本依赖 | 快速原型开发 |
| 寄存器控制 | 无额外依赖,完全控制 | 代码复杂,维护困难 | 需要特殊配置的场景 |
| FIFO方案 | 多通道效率高 | 实现稍复杂 | 多通道轮询场景 |
对于大多数应用,特别是初学者,推荐使用OneShot方案,它的简洁性可以加速开发过程。对于有特殊需求或希望减少依赖的开发者,FIFO方案提供了良好的平衡。只有在需要对ADC行为进行精细控制时,才建议直接操作寄存器。
最佳实践建议
- 对于低频采样(如1Hz),考虑在采样间隔将ADC完全关闭以节省功耗
- 在多通道应用中,合理设置采样间隔以避免通道间串扰
- 对于关键应用,实现超时机制防止ADC挂起
- 考虑在采样前加入少量延迟,确保信号稳定
通过合理选择ADC工作模式,开发者可以在满足应用需求的同时优化系统性能和功耗。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C030
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
TJSONObject完整解析教程:Delphi开发者必备的JSON处理指南 32位ECC纠错Verilog代码:提升FPGA系统可靠性的关键技术方案 TortoiseSVN 1.14.5.29465 中文版:高效版本控制的终极解决方案 全球GEOJSON地理数据资源下载指南 - 高效获取地理空间数据的完整解决方案 JDK 8u381 Windows x64 安装包:企业级Java开发环境的完美选择 Windows Server 2016 .NET Framework 3.5 SXS文件下载与安装完整指南 IK分词器elasticsearch-analysis-ik-7.17.16:中文文本分析的最佳解决方案 QT连接阿里云MySQL数据库完整指南:从环境配置到问题解决 ONVIF设备模拟器:开发测试必备的智能安防仿真工具 STM32到GD32项目移植完全指南:从兼容性到实战技巧
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
424
3.25 K
Ascend Extension for PyTorch
Python
231
263
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
689
331
暂无简介
Dart
686
160
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
React Native鸿蒙化仓库
JavaScript
266
326
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.22 K
667
仓颉编译器源码及 cjdb 调试工具。
C++
136
869