Apache Arrow DataFusion 大文件写入S3存储的优化方案
在数据处理领域,Apache Arrow DataFusion 是一个高性能的查询引擎,它能够执行复杂的SQL查询并将结果写入多种存储系统。然而,当处理大规模数据集并尝试将单个超过100GiB的Parquet文件写入Amazon S3时,用户可能会遇到上传失败的问题。本文将深入分析这一问题的根源,并提出相应的解决方案。
问题背景
DataFusion 使用 ObjectStore 的 BufWriter 来将数据写入远程存储系统。BufWriter 默认使用10MiB的缓冲区大小,这对于大多数场景来说是足够的。然而,当写入非常大的文件到S3时,这个默认配置可能会导致问题。具体来说,S3的多部分上传API支持最多10,000个部分,每个部分最小5MiB。使用默认的10MiB缓冲区,最大只能上传100GiB的文件(10,000 × 10MiB)。
技术细节分析
DataFusion 通过 ObjectStore 的 BufWriter 实现数据写入,该写入器在多个数据源模块中被使用,包括Parquet、CSV和JSON格式的写入。BufWriter 提供了with_capacity方法来调整缓冲区大小,但当前DataFusion没有暴露这个配置选项给用户。
解决方案
为了解决大文件上传的限制,我们建议在DataFusion中增加一个执行配置选项,允许用户指定自定义的缓冲区大小。这个方案涉及以下关键点:
- 在DataFusion的执行配置中添加一个
Option<usize>类型的选项,用于设置缓冲区大小 - 通过TaskContext将这个配置传递给各个数据源写入模块
- 在创建BufWriter时使用用户指定的缓冲区大小
- 保持向后兼容性,当用户不指定时使用默认值
实现考虑
该修改主要涉及DataFusion的以下模块:
- 数据源写入基础模块
- Parquet写入实现
- CSV和JSON写入实现
实现时需要特别注意公共API的稳定性,可以考虑添加一个新的create_writer_with_size函数而不是修改现有的create_writer函数。
替代方案评估
虽然可以通过分割查询结果或使用自定义ObjectStore包装器来绕过这个问题,但这些方法要么不适用于所有场景,要么增加了额外的复杂性。相比之下,直接提供缓冲区大小配置是最直接和灵活的解决方案。
结论
通过增加缓冲区大小的配置选项,DataFusion用户将能够灵活地处理超大文件的写入需求,特别是当目标存储是S3时。这一改进将增强DataFusion在大规模数据处理场景下的适用性,同时保持系统的简单性和易用性。对于需要处理超大数据集的用户来说,这一功能将显著提高他们的工作效率和系统可靠性。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00