Milkdown 在 React 19 环境下的兼容性问题解析
Milkdown 是一款优秀的开源 Markdown 编辑器组件,基于 ProseMirror 构建,提供了丰富的功能和插件系统。最近有开发者反馈在使用 React 19 和 Next.js 15.1.5 环境下遇到了兼容性问题。
问题现象
当开发者在 React 19 环境中使用 @milkdown/react 包时,控制台会抛出以下错误:
TypeError: (0 , {imported module}.createContext) is not a function
这个错误发生在尝试创建 React 上下文时,表明框架无法正确识别 React 的 createContext 方法。
问题根源
经过分析,这个问题实际上不是 Milkdown 本身的兼容性问题,而是 React 19 在 Next.js 环境下的特殊行为导致的。在 Next.js 应用中,默认情况下组件是在服务端渲染的(SSR),而 Milkdown 编辑器作为一个富文本编辑组件,必须运行在客户端环境中。
解决方案
解决这个问题的方法很简单:确保 Milkdown 编辑器组件在客户端渲染。在 Next.js 中,可以通过在组件文件顶部添加 'use client' 指令来实现:
'use client'
import React from "react";
import { Editor, rootCtx } from "@milkdown/kit/core";
import { nord } from "@milkdown/theme-nord";
import { Milkdown, MilkdownProvider, useEditor } from "@milkdown/react";
import { commonmark } from "@milkdown/kit/preset/commonmark";
const MilkdownEditor: React.FC = () => {
// ...组件实现
};
技术背景
这个问题的出现与 React 19 和 Next.js 15 的架构变化有关:
-
React 服务器组件(RSC):React 19 引入了更强大的服务器组件支持,默认情况下 Next.js 会尝试在服务端渲染组件。
-
客户端边界:像编辑器这样的交互式组件需要访问浏览器 API,必须明确标记为客户端组件。
-
上下文限制:React 上下文(Context)只能在客户端组件中使用,服务端组件无法创建或消费上下文。
最佳实践
对于 Milkdown 或其他富文本编辑器在 Next.js 中的使用,建议:
- 始终将编辑器组件标记为客户端组件
- 考虑使用动态导入延迟加载编辑器,减少初始包大小
- 对于复杂的编辑器配置,可以将状态管理提升到父组件
总结
虽然最初看起来像是 Milkdown 的兼容性问题,但实际上这是 React 19 和 Next.js 15 架构变化带来的预期行为。通过正确标记组件边界,开发者可以轻松解决这个问题。这也提醒我们在使用现代 React 框架时,需要更加注意组件的渲染环境区分。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00