Terraform AWS EKS 模块中调整节点磁盘大小的最佳实践
2025-06-12 14:12:21作者:薛曦旖Francesca
前言
在使用 Terraform AWS EKS 模块管理 Kubernetes 集群时,节点磁盘大小的配置是一个常见需求。许多用户在初始部署后发现默认的 20GB 磁盘空间不足,需要扩容。本文将深入探讨在 EKS 托管节点组中调整磁盘大小的几种方法及其技术细节。
问题背景
AWS EKS 托管节点组默认使用 20GB 的根卷大小,这对于生产环境中的许多工作负载来说往往不够。当需要增加磁盘空间时,用户通常会尝试直接设置 disk_size 参数,但发现这并不总是有效。
解决方案比较
方法一:使用 disk_size 参数(不推荐)
最简单的尝试是直接设置 disk_size 参数:
eks_managed_node_groups = {
default_node_group = {
disk_size = 100
# 其他配置...
}
}
然而,这种方法存在以下问题:
- 需要同时设置
use_custom_launch_template = false才会生效 - 禁用自定义启动模板会导致许多功能丢失,如:
- 无法自定义安全组
- IMDS 相关配置恢复默认值
- 可能导致 AWS Load Balancer Controller 等组件无法正常工作
方法二:使用 block_device_mappings(推荐)
更可靠的方法是显式定义块设备映射:
eks_managed_node_groups = {
default_node_group = {
block_device_mappings = {
xvda = {
device_name = "/dev/xvda"
ebs = {
volume_size = 100
volume_type = "gp3"
iops = 3000
throughput = 125
encrypted = true
delete_on_termination = true
}
}
}
# 其他配置...
}
}
关键点:
- 必须正确指定设备名称(Amazon Linux 通常为
/dev/xvda) - 可以完整定义 EBS 卷的所有属性
- 不需要禁用自定义启动模板
技术细节解析
设备名称的重要性
不同操作系统和 AMI 类型使用不同的默认设备名称:
- Amazon Linux 2/2023:
/dev/xvda - Bottlerocket:
/dev/xvda(系统卷)和/dev/xvdb(数据卷)
可以通过 AWS CLI 查询 AMI 的设备映射:
aws ec2 describe-images --image-id $(aws ssm get-parameter --name /aws/service/eks/optimized-ami/1.31/amazon-linux-2023/x86_64/standard/recommended/image_id --region us-west-2 --query "Parameter.Value" --output text) --region us-west-2
IMDS 配置问题
当使用 use_custom_launch_template = false 时,IMDSv2 的跳数限制会恢复默认值 1,这可能导致:
- AWS Load Balancer Controller 无法获取 VPC ID
- 其他依赖实例元数据的服务可能失败
解决方法:
- 避免禁用自定义启动模板
- 如果必须禁用,可以在 Load Balancer Controller 中显式设置 VPC ID:
aws_load_balancer_controller = {
set = [{
name = "vpcId"
value = var.vpc_id
}]
}
最佳实践建议
- 始终使用
block_device_mappings方法调整磁盘大小 - 在生产环境中避免使用
use_custom_launch_template = false - 对于关键组件如 Load Balancer Controller,显式配置必要参数
- 定期检查 AMI 的设备映射,确保配置正确
- 在变更前充分测试,特别是涉及启动模板的修改
总结
在 Terraform AWS EKS 模块中调整节点磁盘大小看似简单,但实际上涉及多个技术细节。通过正确使用块设备映射配置,可以在保留所有自定义功能的同时,安全地扩展节点存储空间。理解底层机制有助于避免生产环境中的潜在问题,确保 Kubernetes 集群的稳定运行。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
533
3.75 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
67
20
暂无简介
Dart
773
191
Ascend Extension for PyTorch
Python
342
406
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
React Native鸿蒙化仓库
JavaScript
303
355
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178