Llama-recipes项目中FSDP全参数微调的实践要点解析
关于FSDP全参数微调的优化器保存问题
在Llama-recipes项目中使用FSDP(完全分片数据并行)进行全参数微调时,优化器状态的保存是一个需要特别注意的技术点。实践表明,当设置save_optimizer=True时,保存的模型文件会显著增大。例如在10K Pawsx数据样本上的微调实验中,会生成多个9.4GB的.distcp文件和25GB的优化器状态文件。而关闭优化器保存后,模型文件大小降至3.14GB左右。
从技术实现角度看,保存优化器状态对于需要中断后继续训练的场景是有价值的,因为它保留了优化器的动量等状态信息,可以避免冷启动问题。但如果仅用于推理部署,则可以安全地关闭此选项以减少存储开销。值得注意的是,当前实现中优化器状态的保存似乎影响了模型分片文件的大小,这一现象值得进一步研究其内部机制。
Llama2基础模型与对话模型的Tokenizer一致性
Llama2系列中基础模型(xB-hf)和对话微调模型(xB-hf-chat)使用了完全相同的tokenizer实现。这一设计决策确保了模型系列间的兼容性,使得基于基础模型微调的成果可以无缝迁移到对话场景中。在实际使用中,通过AutoTokenizer可以自动加载快速tokenizer实现(fast_tokenizer),这能显著提升文本处理效率。
分类任务微调中的标签处理技巧
在Llama2上进行分类任务的监督微调时,对于单标签分类场景,输入部分的标签处理需要特别注意。技术实践表明,未将输入部分标签设置为-100(即忽略这些位置的损失计算)可能会影响模型的学习效率。这是因为语言模型本质上是通过自回归方式预测下一个token,合理设置标签掩码可以更精准地引导模型关注需要优化的预测部分。
训练过程中的随机性控制
实验观察发现,即使在固定随机种子(如42)的情况下,多次运行相同参数的微调过程仍会出现较大的损失波动。这种现象源于PyTorch底层某些操作使用了非确定性算法。虽然可以通过配置强制使用确定性算法,但这会以牺牲训练性能为代价。在实际工程实践中,适度的训练波动是可以接受的,它甚至可能帮助模型逃离局部最优。
通过深入理解这些技术细节,开发者可以更高效地利用Llama-recipes框架进行大规模语言模型的微调工作,在模型效果、训练效率和资源消耗之间取得最佳平衡。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00