shadcn-ui-expansions项目中Creatable选择器性能优化实践
问题现象分析
在使用shadcn-ui-expansions项目的Creatable选择器组件时,开发者发现当输入较长字符串(约45个字符以上)时,浏览器标签页会出现明显的卡顿甚至完全冻结的情况。这个问题在Chromium和Firefox浏览器上都能复现,通过性能分析工具可以观察到存在递归调用导致的性能问题。
问题根源探究
经过深入排查,发现该性能问题与底层使用的cmdk组件有关。Creatable选择器在实现动态创建选项功能时,如果没有提供自定义的过滤函数,cmdk会使用其默认的过滤机制,这个机制在处理长字符串时效率低下,导致了浏览器渲染线程的阻塞。
解决方案实现
方案一:修改组件源码
在MultipleSelector组件的Command组件中添加自定义filter属性:
filter={(value, search) => {
return value.toLowerCase().includes(search.toLowerCase()) ? 1 : -1;
}}
这种修改直接解决了性能问题,因为自定义的过滤函数比cmdk默认的实现更加高效。
方案二:通过props传递过滤函数
如果不方便修改源码,也可以通过组件的commandProps属性传递过滤函数:
commandProps={{
filter: (value, search) => {
return value.toLowerCase().includes(search.toLowerCase()) ? 1 : -1;
},
}}
注意事项与边界情况
虽然上述解决方案有效解决了性能问题,但开发者需要注意一个边界情况:当输入字符串末尾包含空格时,Creatable选项可能会消失。这是因为cmdk内部对value值进行了trim()处理,导致包含空格的搜索条件无法匹配。
例如:
- 输入"Hello "(末尾有空格)会导致CreatableItem消失
- 输入"Hello my friend"(中间有空格)则工作正常
最佳实践建议
-
性能优化:对于需要处理用户自由输入的Creatable组件,务必提供自定义的过滤函数以避免性能问题。
-
用户体验:考虑在UI中添加提示,告知用户输入中末尾空格可能导致选项消失的问题,或者在前端逻辑中自动处理末尾空格。
-
组件封装:如果项目中有多处使用Creatable选择器,建议创建一个高阶组件或自定义hook来统一处理这些边界情况和性能优化。
总结
通过分析shadcn-ui-expansions项目中Creatable选择器的性能问题,我们不仅找到了解决方案,还深入理解了cmdk组件的工作机制。这类问题的解决思路可以推广到其他基于cmdk的组件开发中,特别是在需要处理用户自由输入的场景下,自定义过滤逻辑往往是提升性能的关键。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C067
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0130
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00