首页
/ 推荐:高效强大的梯度提升决策树库——GBDT

推荐:高效强大的梯度提升决策树库——GBDT

2024-05-19 22:13:52作者:仰钰奇

在机器学习的世界里,当我们需要超越线性模型的局限时,【梯度提升决策树算法(GBDT)】是一个值得信赖的选择。本项目由Jiang Chen(criver@gmail.com)开发,提供了一个高性能、功能全面的C++实现,包含了Jerome H. Friedman的经典算法及其现代变体。

1、项目介绍

GBDT不仅仅是一个普通的机器学习库,它以其高效的内存管理、多样的损失函数和处理类别特征与缺失值的能力而脱颖而出。无论你的数据集有多大,或者你需要解决的问题有多复杂,GBDT都能为你提供解决方案。

2、项目技术分析

高效内存利用:通过特征桶化技术,GBDT极大地减少了内存消耗。对于某些测试数据集,相比于同类库,它的内存使用量仅为1/7,训练时间却只需一半,性能表现令人印象深刻。

灵活处理类别特征与缺失值:GBDT内置了处理类别特征和缺失值的方法,使得即使在这些复杂情况下也能构建出高质量的决策树模型。

多样化的损失函数支持:从点对点、点对列表的损失函数到如MSE、LogLoss、Huberized Hinge Loss等,GBDT提供了多种选择,同时也支持自定义损失函数。

3、项目及技术应用场景

  • 当你寻求超越线性模型的预测效果时,例如在非线性问题或特征间复杂交互作用的场景下。
  • 大规模数据分析:当你处理的数据无法完全加载到内存中,GBDT的低内存占用特性将大显身手。
  • 处理类别特征丰富的数据集,如用户行为分析、商品分类等。
  • 在排序任务中,例如搜索引擎的查询结果排序,GBDT的LambdaMart等损失函数可以优化NDCG指标。

4、项目特点

  • 高效:速度快,内存占用低。
  • 灵活:支持多种损失函数和自定义功能。
  • 容易使用:提供Python接口,安装简单。
  • 兼容性强:适用于Linux x86_64 和OSX x86_64平台。

想要了解更多关于GBDT的信息,包括安装指南、教程、算法详情以及性能基准测试,请查阅项目文档:

如果你正在寻找一个能够应对复杂挑战的机器学习工具,不妨试试GBDT,它可能会超出你的预期。

登录后查看全文
热门项目推荐

项目优选

收起
docsdocs
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
144
1.92 K
kernelkernel
deepin linux kernel
C
22
6
nop-entropynop-entropy
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
8
0
ohos_react_nativeohos_react_native
React Native鸿蒙化仓库
C++
192
274
RuoYi-Vue3RuoYi-Vue3
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
930
553
openHiTLSopenHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
422
392
openGauss-serveropenGauss-server
openGauss kernel ~ openGauss is an open source relational database management system
C++
145
189
金融AI编程实战金融AI编程实战
为非计算机科班出身 (例如财经类高校金融学院) 同学量身定制,新手友好,让学生以亲身实践开源开发的方式,学会使用计算机自动化自己的科研/创新工作。案例以量化投资为主线,涉及 Bash、Python、SQL、BI、AI 等全技术栈,培养面向未来的数智化人才 (如数据工程师、数据分析师、数据科学家、数据决策者、量化投资人)。
Jupyter Notebook
75
65
Cangjie-ExamplesCangjie-Examples
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
344
1.3 K
easy-eseasy-es
Elasticsearch 国内Top1 elasticsearch搜索引擎框架es ORM框架,索引全自动智能托管,如丝般顺滑,与Mybatis-plus一致的API,屏蔽语言差异,开发者只需要会MySQL语法即可完成对Es的相关操作,零额外学习成本.底层采用RestHighLevelClient,兼具低码,易用,易拓展等特性,支持es独有的高亮,权重,分词,Geo,嵌套,父子类型等功能...
Java
36
8