PyTorch Lightning Fabric中分布式保存的正确实践
2025-05-05 07:26:05作者:邓越浪Henry
在分布式训练场景下,模型和状态的保存是一个需要特别注意的技术点。本文将以PyTorch Lightning Fabric项目为例,深入探讨分布式环境下如何正确保存训练状态。
分布式保存的常见误区
许多开发者从单机训练转向分布式训练时,会保留原有的保存习惯,即在rank 0进程上执行保存操作。这种模式在纯PyTorch分布式训练中确实是常见做法,通常会写出类似下面的代码:
if rank == 0:
torch.save(state_dict, "model.pth")
这种模式虽然能在纯PyTorch分布式环境中工作,但在使用PyTorch Lightning Fabric时却会导致问题。
Fabric的智能保存机制
PyTorch Lightning Fabric为分布式训练提供了更高层次的抽象,其中就包括智能化的保存机制。Fabric的save()方法已经内置了分布式逻辑,会根据当前使用的策略自动处理不同rank上的保存行为。
例如:
- 使用DDP策略时,Fabric会自动只在rank 0上保存单个文件
- 使用FSDP策略时,Fabric会协调所有rank保存各自的部分
正确的保存方式
使用Fabric时,应该直接调用fabric.save()而无需手动判断rank:
# 正确的做法
state = {"model": model, "optimizer": optimizer}
fabric.save("checkpoint.pth", state)
这种简洁的写法不仅更易读,而且能保证在不同分布式策略下的行为一致性。
底层原理分析
Fabric的保存机制之所以能如此简洁,是因为它在底层做了大量工作:
- 策略感知:自动识别当前使用的分布式策略
- 进程协调:通过集体通信确保保存操作的同步
- 文件处理:根据策略需要处理文件命名和路径
- 错误处理:捕获并处理可能出现的分布式I/O异常
实际应用建议
在实际项目中,建议:
- 始终使用Fabric提供的保存接口
- 避免手动判断rank来执行保存
- 对于复杂状态,可以构建字典统一保存
- 定期测试保存和加载的完整性
通过遵循这些最佳实践,可以确保分布式训练中状态保存的可靠性和一致性,让开发者能够更专注于模型本身的开发工作。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
532
3.74 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
Ascend Extension for PyTorch
Python
340
403
暂无简介
Dart
771
191
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
247
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
416
4.21 K
React Native鸿蒙化仓库
JavaScript
303
355