Actions Runner Controller在Kubernetes模式下创建Job Pod失败的解决方案
问题背景
在使用GitHub Actions Runner Controller(ARC)的Kubernetes模式时,用户遇到了Job Pod创建失败的问题。具体表现为当工作流尝试在自定义Runner上运行时,系统报错"failed to create job pod: HttpError: HTTP request failed"。
环境配置
用户部署的环境具有以下特点:
- 使用了自定义的Runner镜像,基于官方Runner镜像2.311.0版本构建
- 镜像中包含了一个pod-template.yaml文件,用于定义Job Pod的模板
- 部署在AWS EKS集群上
- 配置了公司内部的HTTP/HTTPS代理
- 为ARC相关的命名空间设置了资源配额(ResourceQuota)
问题分析
从日志和配置来看,问题可能由以下几个因素导致:
-
资源配额限制:为ARC Runner命名空间设置的ResourceQuota可能过于严格,导致Job Pod无法获得足够的资源配额而被拒绝创建。
-
Pod模板配置:初始的pod-template.yaml只配置了安全上下文,但没有为Job容器设置资源请求和限制,这可能导致调度失败。
-
代理配置:虽然配置了代理,但错误信息显示的是HTTP请求失败,而非连接问题,因此代理可能不是直接原因。
解决方案
用户最终通过以下方法解决了问题:
-
移除ResourceQuota限制:删除了为arc-runners命名空间设置的资源配额,允许Pod根据实际需求获取资源。
-
完善Pod模板:更新了pod-template.yaml文件,为Job容器明确设置了资源请求和限制:
metadata:
annotations:
annotated-by: "extension"
labels:
labeled-by: "extension"
spec:
securityContext:
runAsUser: 1001
runAsGroup: 123
fsGroup: 123
containers:
- name: $job
resources:
requests:
memory: "200Mi"
cpu: "250m"
limits:
memory: "400Mi"
cpu: "500m"
最佳实践建议
-
资源配额设置:如果必须使用ResourceQuota,应确保配额足够宽松,能够容纳Runner Pod和Job Pod的资源需求。可以考虑:
- 为Runner Pod和Job Pod分别设置不同的配额
- 使用优先级类(PriorityClass)确保关键Pod能够获得资源
- 监控资源使用情况,动态调整配额
-
Pod模板设计:完整的Pod模板应包含:
- 适当的安全上下文配置
- 明确的资源请求和限制
- 必要的标签和注解
- 其他运行时需要的配置
-
测试验证:在应用到生产环境前,应在测试环境中充分验证配置:
- 测试不同规模的工作负载
- 验证资源配额下的行为
- 检查日志和监控指标
总结
GitHub Actions Runner Controller的Kubernetes模式为企业提供了强大的CI/CD能力,但在复杂的企业环境中部署时需要注意资源管理和配置细节。通过合理的资源配额设置和完整的Pod模板配置,可以确保Runner和Job Pod能够顺利创建和运行,从而构建稳定可靠的CI/CD流水线。
HunyuanImage-3.0
HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0370Hunyuan3D-Part
腾讯混元3D-Part00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0100AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选









