Actions Runner Controller在Kubernetes模式下创建Job Pod失败的解决方案
问题背景
在使用GitHub Actions Runner Controller(ARC)的Kubernetes模式时,用户遇到了Job Pod创建失败的问题。具体表现为当工作流尝试在自定义Runner上运行时,系统报错"failed to create job pod: HttpError: HTTP request failed"。
环境配置
用户部署的环境具有以下特点:
- 使用了自定义的Runner镜像,基于官方Runner镜像2.311.0版本构建
- 镜像中包含了一个pod-template.yaml文件,用于定义Job Pod的模板
- 部署在AWS EKS集群上
- 配置了公司内部的HTTP/HTTPS代理
- 为ARC相关的命名空间设置了资源配额(ResourceQuota)
问题分析
从日志和配置来看,问题可能由以下几个因素导致:
-
资源配额限制:为ARC Runner命名空间设置的ResourceQuota可能过于严格,导致Job Pod无法获得足够的资源配额而被拒绝创建。
-
Pod模板配置:初始的pod-template.yaml只配置了安全上下文,但没有为Job容器设置资源请求和限制,这可能导致调度失败。
-
代理配置:虽然配置了代理,但错误信息显示的是HTTP请求失败,而非连接问题,因此代理可能不是直接原因。
解决方案
用户最终通过以下方法解决了问题:
-
移除ResourceQuota限制:删除了为arc-runners命名空间设置的资源配额,允许Pod根据实际需求获取资源。
-
完善Pod模板:更新了pod-template.yaml文件,为Job容器明确设置了资源请求和限制:
metadata:
annotations:
annotated-by: "extension"
labels:
labeled-by: "extension"
spec:
securityContext:
runAsUser: 1001
runAsGroup: 123
fsGroup: 123
containers:
- name: $job
resources:
requests:
memory: "200Mi"
cpu: "250m"
limits:
memory: "400Mi"
cpu: "500m"
最佳实践建议
-
资源配额设置:如果必须使用ResourceQuota,应确保配额足够宽松,能够容纳Runner Pod和Job Pod的资源需求。可以考虑:
- 为Runner Pod和Job Pod分别设置不同的配额
- 使用优先级类(PriorityClass)确保关键Pod能够获得资源
- 监控资源使用情况,动态调整配额
-
Pod模板设计:完整的Pod模板应包含:
- 适当的安全上下文配置
- 明确的资源请求和限制
- 必要的标签和注解
- 其他运行时需要的配置
-
测试验证:在应用到生产环境前,应在测试环境中充分验证配置:
- 测试不同规模的工作负载
- 验证资源配额下的行为
- 检查日志和监控指标
总结
GitHub Actions Runner Controller的Kubernetes模式为企业提供了强大的CI/CD能力,但在复杂的企业环境中部署时需要注意资源管理和配置细节。通过合理的资源配额设置和完整的Pod模板配置,可以确保Runner和Job Pod能够顺利创建和运行,从而构建稳定可靠的CI/CD流水线。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00