在dotnet/extensions项目中处理MEAI输出数据大小限制的最佳实践
2025-06-27 04:05:40作者:幸俭卉
背景介绍
在开发基于MEAI(Microsoft Extensions for AI)的应用程序时,开发者经常会遇到输入令牌(token)数量超过模型限制的问题。这种情况通常发生在长时间对话或大量函数调用返回大量信息时。本文将深入探讨如何有效管理和优化MEAI中的输出数据大小。
核心问题分析
当使用MEAI进行AI交互时,系统会自动将函数调用的结果添加回对话历史中。随着对话的深入,累积的上下文信息可能会超出模型的最大令牌限制,导致错误。这需要我们找到合适的切入点来干预和控制数据流。
解决方案详解
1. 自定义IChatClient实现
MEAI提供了灵活的管道机制,开发者可以在FunctionInvokingChatClient之后插入自定义的IChatClient实现。这种方式允许我们在数据发送到AI模型前进行拦截和处理。
// 示例代码:自定义IChatClient实现
public class TokenLimitingChatClient : IChatClient
{
private readonly IChatClient _innerClient;
private readonly int _maxTokens;
public TokenLimitingChatClient(IChatClient innerClient, int maxTokens)
{
_innerClient = innerClient;
_maxTokens = maxTokens;
}
public async Task<IReadOnlyList<ChatMessage>> CompleteChatAsync(
ChatHistory chatHistory,
CompleteChatOptions options,
CancellationToken cancellationToken)
{
// 在这里实现令牌计数和限制逻辑
var limitedHistory = LimitTokens(chatHistory, _maxTokens);
return await _innerClient.CompleteChatAsync(limitedHistory, options, cancellationToken);
}
private ChatHistory LimitTokens(ChatHistory history, int maxTokens)
{
// 实现令牌限制逻辑
// ...
}
}
2. 继承FunctionInvokingChatClient
更精细的控制可以通过继承FunctionInvokingChatClient并重写其关键方法来实现:
public class CustomFunctionInvokingChatClient : FunctionInvokingChatClient
{
protected override IReadOnlyList<ChatMessage> CreateResponseMessages(
ChatHistory chatHistory,
FunctionCall functionCall,
FunctionResult functionResult)
{
// 在创建响应消息前进行自定义处理
var modifiedResult = ProcessFunctionResult(functionResult);
return base.CreateResponseMessages(chatHistory, functionCall, modifiedResult);
}
}
3. 使用Terminate控制流程
函数调用可以通过设置Terminate标志来中断自动调用流程,让调用者有调整的机会:
// 在函数实现中
context.Terminate = true;
令牌计数技术
为了有效管理令牌数量,我们需要准确计算文本对应的令牌数。对于OpenAI模型,可以使用Microsoft.ML.Tokenizers中的TiktokenTokenizer:
using Microsoft.ML.Tokenizers;
var tokenizer = Tokenizer.CreateTiktokenForModel("gpt-4");
var text = "需要计算令牌数的文本";
var tokens = tokenizer.Encode(text);
var tokenCount = tokens.Count;
最佳实践建议
- 对话历史管理:实现智能的对话历史截断策略,保留最相关的上下文
- 函数结果优化:设计函数返回精简的数据结构,避免冗余信息
- 分层处理:对不同重要性的信息采用不同的处理策略
- 监控机制:实现令牌使用量的实时监控和预警
- 优雅降级:当接近限制时,自动切换到简化模式
总结
在dotnet/extensions项目中使用MEAI时,通过合理利用IChatClient管道、继承关键类和令牌计数技术,开发者可以有效地管理输出数据大小,避免超出模型限制。这些技术不仅解决了当前问题,还为构建更健壮的AI应用提供了基础架构支持。
对于需要处理大量数据或长时间对话的场景,建议结合多种技术手段,建立完整的数据流管理策略,确保AI交互的稳定性和效率。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
24
9
Ascend Extension for PyTorch
Python
222
245
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
暂无简介
Dart
672
157
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
661
312
React Native鸿蒙化仓库
JavaScript
262
322
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
仓颉编译器源码及 cjdb 调试工具。
C++
134
867
仓颉编程语言测试用例。
Cangjie
37
860
openGauss kernel ~ openGauss is an open source relational database management system
C++
160
217